Part Number Hot Search : 
368011 2SD24 GRM188R6 28F00 4AC24 12A50 12A50 PH110
Product Description
Full Text Search
 

To Download STM32F078RB Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  this is information on a product in full production. january 2017 docid026006 rev 4 1/120 stm32f078cb STM32F078RB stm32f078vb arm ? -based 32-bit mcu, 128 kb flash, crystal-less usb fs 2.0, 12 timers, adc, dac and comm. interfaces, 1.8 v datasheet - production data features ? core: arm ? 32-bit cortex ? -m0 cpu, frequency up to 48 mhz ? memories ? 128 kbytes of flash memory ? 16 kbytes of sram with hw parity ? crc calculation unit ? power management ? digital and i/o supply: v dd = 1.8 v 8% ? analog supply: v dda = v dd to 3.6 v ? selected i/os: v ddio2 = 1.65 v to 3.6 v ? low power modes: sleep, stop ?v bat supply for rtc and backup registers ? clock management ? 4 to 32 mhz crystal oscillator ? 32 khz oscillator for rtc with calibration ? internal 8 mhz rc with x6 pll option ? internal 40 khz rc oscillator ? internal 48 mhz oscillator with automatic trimming based on ext. synchronization ? up to 86 fast i/os ? all mappable on external interrupt vectors ? up to 67 i/os with 5v tolerant capability and 19 with independent supply v ddio2 ? seven-channel dma controller ? one 12-bit, 1.0 s adc (up to 16 channels) ? conversion range: 0 to 3.6 v ? separate analog supply: 2.4 v to 3.6 v ? two independent 12-bit dac channels ? two fast low-power analog comparators with programmable input and output ? up to 23 capacitive sensing channels for touchkey, linear and ro tary touch sensors ? calendar rtc with alarm and periodic wakeup from stop ? 12 timers ? one 16-bit advanced-control timer for six-channel pwm output ? one 32-bit and seven 16-bit timers, with up to four ic/oc, ocn, usable for ir control decoding or dac control ? independent and system watchdog timers ? systick timer ? communication interfaces ?two i 2 c interfaces supporting fast mode plus (1 mbit/s), one supporting smbus/pmbus and wakeup ? four usarts supporting master synchronous spi and modem control, two with iso7816 interface, lin, irda, auto baud rate detection and wakeup feature ? two spis (18 mbit/s) with 4 to 16 programmable bit frames, and with i 2 s interface multiplexed ? usb 2.0 full-speed interface, able to run from internal 48 mhz oscillator and with bcd and lpm support ? hdmi cec wakeup on header reception ? serial wire debug (swd) ? 96-bit unique id ? all packages ecopack ? 2 lqfp100 14x14 mm lqfp64 10x10 mm lqfp48 7x7 mm ufqfpn48 7x7 mm ufbga100 )%*$ 7x7 mm wlcsp49 3.3x3.1 mm www.st.com
contents stm32f078cb, STM32F078RB, stm32f078vb 2/120 docid026006 rev 4 contents 1 introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2 description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 3 functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1 arm ? -cortex ? -m0 core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 memories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.3 boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.4 cyclic redundancy check calculation unit (crc) . . . . . . . . . . . . . . . . . . . 14 3.5 power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.1 power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.2 power-on reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.5.3 low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.6 clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.7 general-purpose inputs/outputs (gpios) . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.8 direct memory access controller (dma) . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9 interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.9.1 nested vectored interrupt controller (nvic) . . . . . . . . . . . . . . . . . . . . . . 17 3.9.2 extended interrupt/event controller (exti) . . . . . . . . . . . . . . . . . . . . . . 17 3.10 analog-to-digital converter (adc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.10.1 temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.2 internal voltage reference (v refint ) . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.10.3 v bat battery voltage monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.11 digital-to-analog converter (dac) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.12 comparators (comp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.13 touch sensing controller (tsc) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.14 timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.1 advanced-control timer (tim1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.14.2 general-purpose timers (tim2, 3, 14, 15 , 16, 17) . . . . . . . . . . . . . . . . . 22 3.14.3 basic timers tim6 and tim7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.4 independent watchdog (iwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.5 system window watchdog (wwdg) . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14.6 systick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
docid026006 rev 4 3/120 stm32f078cb, STM32F078RB, stm32f078vb contents 4 3.15 real-time clock (rtc) and backup registers . . . . . . . . . . . . . . . . . . . . . . 23 3.16 inter-integrated circuit interface (i 2 c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.17 universal synchronous/asynchronous receiver/transmitter (usart) . . . 25 3.18 serial peripheral interface (spi) / inter-integrated sound interface (i 2 s) . 26 3.19 high-definition multimedia interface (hdmi) - consumer electronics control (cec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.20 universal serial bus (usb) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.21 clock recovery system (crs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.22 serial wire debug port (sw-dp) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 4 pinouts and pin descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 5 memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 6 electrical characteristi cs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1 parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.1 minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.2 typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.3 typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.4 loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.5 pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6.1.6 power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 6.1.7 current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 6.2 absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 6.3 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.1 general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 6.3.2 operating conditions at power-up / powe r-down . . . . . . . . . . . . . . . . . . 51 6.3.3 embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.4 supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.5 wakeup time from low-power mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.6 external clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 6.3.7 internal clock source charac teristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 6.3.8 pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.9 memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 6.3.10 emc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 6.3.11 electrical sensitivity characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
contents stm32f078cb, STM32F078RB, stm32f078vb 4/120 docid026006 rev 4 6.3.12 i/o current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 6.3.13 i/o port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3.14 nrst and npor pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.3.15 12-bit adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3.16 dac electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 6.3.17 comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 6.3.18 temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.19 v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.20 timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 6.3.21 communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 7 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.1 ufbga100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 7.2 lqfp100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 7.3 lqfp64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 7.4 wlcsp49 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 7.5 lqfp48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 7.6 ufqfpn48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 7.7 thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 7.7.1 reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 7.7.2 selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . 114 8 ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 9 revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
docid026006 rev 4 5/120 stm32f078cb, STM32F078RB, stm32f078vb list of tables 6 list of tables table 1. stm32f078cb/rb/vb family device features and peripheral counts . . . . . . . . . . . . . . . . 11 table 2. temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 3. internal voltage reference calibrati on values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 table 4. capacitive sensing gpios available on stm3 2f078cb/rb/vb devices . . . . . . . . . . . . . . 20 table 5. number of capacitive sensing channels available on stm32f078cb/rb/vb devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 table 6. timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 table 7. comparison of i 2 c analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 table 8. stm32f078cb/rb/vb i 2 c implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 9. stm32f078cb/rb/vb usart implementation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 table 10. stm32f078cb/rb/vb spi/i 2 s implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 table 11. legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 12. stm32f078cb/rb/vb pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 table 13. alternate functions selected through gpioa_af r registers for port a . . . . . . . . . . . . . . . 39 table 14. alternate functions selected through gpiob_af r registers for port b . . . . . . . . . . . . . . . 40 table 15. alternate functions selected through gpioc_af r registers for port c . . . . . . . . . . . . . . . 41 table 16. alternate functions selected through gpiod_af r registers for port d . . . . . . . . . . . . . . . 41 table 17. alternate functions selected through gpioe_af r registers for port e . . . . . . . . . . . . . . . 42 table 18. alternate functions available on port f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 table 19. stm32f078cb/rb/vb peripheral register boundary addresses . . . . . . . . . . . . . . . . . . . . 44 table 20. voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 table 21. current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 22. thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 table 23. general operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 table 24. operating conditions at power-up / power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 table 25. embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 table 26. typical and maximum current consumption from v dd supply at v dd = 1.8 v . . . . . . . . . . 53 table 27. typical and maximum current consumption from the v dda supply . . . . . . . . . . . . . . . . . 55 table 28. typical and maximum current consumption from the v bat supply. . . . . . . . . . . . . . . . . . . 55 table 29. typical current consumption, code executing from flash memory, running from hse 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 table 30. typical and maximum consumption in stop mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 table 31. switching output i/o current cons umption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 table 32. peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 table 33. low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 34. high-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 table 35. low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 table 36. hse oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 table 37. lse oscillator characteristics (f lse = 32.768 khz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 table 38. hsi oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 table 39. hsi14 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 table 40. hsi48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 table 41. lsi oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 42. pll characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 43. flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 table 44. flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 45. ems characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 table 46. emi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
list of tables stm32f078cb, STM32F078RB, stm32f078vb 6/120 docid026006 rev 4 table 47. esd absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 48. electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 table 49. i/o current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 50. i/o static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 table 51. output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 table 52. i/o ac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 table 53. nrst pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 table 54. npor pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 55. adc characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 table 56. r ain max for f adc = 14 mhz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 table 57. adc accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 table 58. dac characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 table 59. comparator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 table 60. ts characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 61. v bat monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 62. timx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 table 63. iwdg min/max timeout period at 40 khz (lsi). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 64. wwdg min/max timeout value at 48 mhz (pclk). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 table 65. i 2 c analog filter characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 66. spi characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 table 67. i 2 s characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 table 68. usb electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95 table 69. ufbga100 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 table 70. ufbga100 recommended pcb design rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 table 71. lqpf100 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 table 72. lqfp64 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 table 73. wlcsp49 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 table 74. lqfp48 package mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 table 75. ufqfpn48 package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 table 76. package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 table 77. ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 table 78. document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
docid026006 rev 4 7/120 stm32f078cb, STM32F078RB, stm32f078vb list of figures 8 list of figures figure 1. block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 figure 2. clock tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 figure 3. ufbga100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 figure 4. lqfp100 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 figure 5. lqfp64 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 6. lqfp48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 figure 7. ufqfpn48 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 8. wlcsp49 package pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 figure 9. stm32f078cb/rb/vb memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 figure 10. pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 11. pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 figure 12. power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 figure 13. current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 figure 14. high-speed external clock source ac timing diagra m . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 figure 15. low-speed external clock source ac timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 figure 16. typical application with an 8 mhz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 figure 17. typical application with a 32.768 khz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 figure 18. hsi oscillator accuracy char acterization results for soldered parts . . . . . . . . . . . . . . . . . . 66 figure 19. hsi14 oscillator accuracy charac terization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 figure 20. hsi48 oscillator accuracy charac terization results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 figure 21. tc and tta i/o input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 22. five volt tolerant (ft and ftf) i/o input characte ristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 figure 23. i/o ac characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 figure 24. recommended nrst pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 figure 25. adc accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 figure 26. typical connection diagram using the adc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 figure 27. 12-bit buffered / non-buffered dac. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 figure 28. maximum v refint scaler startup time from power down . . . . . . . . . . . . . . . . . . . . . . . . . . 87 figure 29. spi timing diagram - slave mode and cpha = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 figure 30. spi timing diagram - slave mode and cpha = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 figure 31. spi timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 figure 32. i 2 s slave timing diagram (philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 figure 33. i 2 s master timing diagram (ph ilips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 figure 34. ufbga100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96 figure 35. recommended footprint for ufbga100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 figure 36. ufbga100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 figure 37. lqfp100 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 figure 38. recommended footprint for lqfp100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 figure 39. lqfp100 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 figure 40. lqfp64 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 figure 41. recommended footprint for lqfp64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 figure 42. lqfp64 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 figure 43. wlcsp49 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 figure 44. wlcsp49 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 figure 45. lqfp48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 figure 46. recommended footprint for lqfp48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 figure 47. lqfp48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 figure 48. ufqfpn48 package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
list of figures stm32f078cb, STM32F078RB, stm32f078vb 8/120 docid026006 rev 4 figure 49. recommended footprint for ufqfpn48 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 figure 50. ufqfpn48 package marking example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 figure 51. lqfp64 p d max versus t a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
docid026006 rev 4 9/120 stm32f078cb, STM32F078RB, stm32f078vb introduction 27 1 introduction this datasheet provides the ordering informat ion and mechanical devic e characteristics of the stm32f078cb/rb/vb microcontrollers. this document should be read in conjunct ion with the stm32f0xxxx reference manual (rm0091). the reference manual is available from the stmicroelectronics website www.st.com . for information on the arm ? cortex ? -m0 core, please refer to the cortex ? -m0 technical reference manual, available from the www.arm.com website.
description stm32f078cb, STM32F078RB, stm32f078vb 10/120 docid026006 rev 4 2 description the stm32f078cb/rb/vb microcontrollers incorporate the high-performance arm ? cortex ? -m0 32-bit risc core operating at up to 48 mhz frequency, high-speed embedded memories (128 kbytes of flash memory and 16 kbytes of sram), and an extensive range of enhanced peripherals and i/os. all devices of fer standard communication interfaces (two i 2 cs, two spi/i 2 s, one hdmi cec and four usarts), one usb full-speed device (crystal- less), one 12-bit adc, one 12 -bit dac with two channels, se ven 16-bit timers, one 32-bit timer and an advanced-control pwm timer. the stm32f078cb/rb/vb microcontrollers operat e in the -40 to +85 c and -40 to +105 c temperature ranges from a 1.8 v 8% power supply. a comprehensive set of power- saving modes allows the design of low-power applications. the stm32f078cb/rb/vb microcontrollers in clude devices in six different packages ranging from 48 pins to 100 pins with a die form also available upon request. depending on the device chosen, different sets of peripherals are included. these features make the stm32f078cb/rb/vb mi crocontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, a/v receivers and digital tv, pc peripherals, gami ng and gps platforms, industrial applications, plcs, inverters, printers, scanners, al arm systems, video intercoms and hvacs.
docid026006 rev 4 11/120 stm32f078cb, STM32F078RB, stm32f078vb description 27 table 1. stm32f078cb/rb/vb family device features and peripheral counts peripheral stm32f078cb STM32F078RB stm32f078vb flash memory (kbyte) 128 sram (kbyte) 16 timers advanced control 1 (16-bit) general purpose 5 (16-bit) 1 (32-bit) basic 2 (16-bit) comm. interfaces spi [i 2 s] (1) 2 [2] i 2 c2 usart 4 usb 1 cec 1 12-bit adc (number of channels) 1 (10 ext. + 3 int.) 1 (16 ext. + 3 int.) 12-bit dac (number of channels) 1 (2) analog comparator 2 gpios 36 50 86 capacitive sensing channels 16 17 23 max. cpu frequency 48 mhz operating voltage v dd = 1.8 v 8%, v dda = from v dd to 3.6 v operating temperature ambient operating temperature: -40c to 85c / -40c to 105c junction temperature: -40c to 105c / -40c to 125c packages lqfp48 ufqfpn48 wlcsp49 lqfp64 lqfp100 ufbga100 1. the spi interface can be used either in spi mode or in i 2 s audio mode.
description stm32f078cb, STM32F078RB, stm32f078vb 12/120 docid026006 rev 4 figure 1. block diagram 06y9 3rzhugrpdlqridqdorjeorfnv 9 %$7 9 '',2 fkdqqhov frpsofkdqqhov %5.(75lqsxwdv$) #9 '' #9 ''$ 6\vwhpdqgshulskhudo forfnv 3$>@ 3%>@ 3&>@ 3)>@3) 3)>@ jurxsvri fkdqqhov 6<1& $) 026,6' 0,620&. 6&.&. 166:6dv$) #9 ''$ 9 ''$ 9 66$ 6:&/. 6:',2 dv$) [ $'lqsxw 26&b,1 26&b287 9 %$7 wr9 26&b,1 26&b287 7$03(557& $/$50287 #9 %$7 6<1& 026,6' 0,620&. 6&.&. 166:6dv$) +6, +6, /6, +6, 3//&/. 9 '' ,5b287dv$) fkdqqho frpso%5.dv$) fkdqqho frpso%5.dv$) fkdqqhodv$) fk(75dv$) fk(75dv$) *3'0$ fkdqqhov &257(;0&38 i 0$;  0+] 6huldo:luh 'hexj 19,& 7rxfk 6hqvlqj &rqwuroohu 3$' $qdorj vzlwfkhv (;7,7:.83 63,,6 63,,6 6<6&)*,) '%*0&8 :lqgrz:'* $3% $+% &5& 5(6(7 &/2&. &21752/ ;7$/26& 0+] ,qg:lqgrz:'* 65$0 .% 7hps vhqvru ,) elw$'& 57& %dfnxs uhj 57&lqwhuidfh &56 5&0+] 5&0+] 5&n+] 3// 5&0+] $+%ghfrghu ;7$/n+] 65$0 frqwuroohu %xvpdwul[ )odvk phpru\ lqwhuidfh )odvk*3/ .% elw 2eo 9 '' fkdqqhov frpso%5.dv$) 5;7;&76576 &.dv$) 5;7;&76576 &.dv$) 5;7;&76576 &.dv$) 5;7;&76576 &.dv$) 6&/6'$ h[wudp$)0 dv$) 6&/6'$60%$ h[wudp$)0 dv$) &(&dv$) ,& ,& elw'$& elw'$& ,) '$&b287 '$&b287 #9 ''$ 7,0(5 7,0(5 *3frpsdudwru *3frpsdudwru ,1387 ,1387 287387 dv$) #9 ''$ *3,2sruw) *3,2sruw( *3,2sruw' *3,2sruw& *3,2sruw% *3,2sruw$ 3'>@ 3(>@ 9 ''$ 86$57 86$57 86$57 86$57 +'0,&(& 7,0(5 7,0(5 7,0(5 7,0(5 7,0(5 7,0(5elw 3:07,0(5 '' #9 '',2 86% 3+< 86% 65$0% 6833/< 683(59,6,21 #9 ''$ #9 '' 9 '' 325 5hvhw ,qw 9 '' 9? 9 66 1567 9 ''$ 9 66$ 1325 32:(5 1325 325
docid026006 rev 4 13/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 3 functional overview figure 1 shows the general block diagram of the stm32f078cb/rb/vb devices. 3.1 arm ? -cortex ? -m0 core the arm ? cortex ? -m0 is a generation of arm 32-bit risc processors for embedded systems. it has been developed to provide a low-cost platform that meets the needs of mcu implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts. the arm ? cortex ? -m0 processors feature exceptional code-efficiency, delivering the high performance expected from an arm core, with me mory sizes usually associated with 8- and 16-bit devices. the stm32f078cb/rb/vb devices embed arm core and are compatible with all arm tools and software. 3.2 memories the device has the following features: ? 16 kbytes of embedded sram accessed (r ead/write) at cpu clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications. ? the non-volatile memory is divided into two arrays: ? 128 kbytes of embedded flash memory for programs and data ? option bytes the option bytes are used to write-protect the memory (with 4 kb granularity) and/or readout-protect the whole memory with the following options: ? level 0: no readout protection ? level 1: memory readout protection, th e flash memory cannot be read from or written to if either debug features ar e connected or boot in ram is selected ? level 2: chip readout protec tion, debug features (cortex ? -m0 serial wire) and boot in ram selection disabled 3.3 boot modes at startup, the boot pin and boot selector opti on bit are used to select one of the three boot options: ? boot from user flash memory ? boot from system memory ? boot from embedded sram the boot loader is located in system memory. it is used to reprogram the flash memory by using usart on pins pa14/pa15 or pa9/pa10 or i 2 c on pins pb6/pb7 or through the usb dfu interface.
functional overview stm32f078cb, STM32F078RB, stm32f078vb 14/120 docid026006 rev 4 3.4 cyclic redundancy che ck calculation unit (crc) the crc (cyclic redundancy check) calculati on unit is used to get a crc code using a configurable generator polynomial value and size. among other applications, crc-based techniques are used to verify data transmission or storage integrity. in the scope of the en/iec 60335-1 standard, they offer a means of verifying the flash memory integrity. the crc calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link- time and stored at a given memory location. 3.5 power management 3.5.1 power supply schemes ? v dd = v ddio1 = 1.8 v 8%: external power supply for i/os (v ddio1 ) and digital logic. it is provided externally through vdd pins. ? v dda = from v dd to 3.6 v: external analog power supply for adc, dac, rcs and pll (minimum voltage to be applied to v dda is 2.4 v when the adc or dac are used). it is provided externally through vdda pin. the v dda voltage level must be always greater or equal to the v dd voltage level and must be established first. ? v ddio2 = 1.65 to 3.6 v: external power supply for marked i/os. v ddio2 is provided externally through the vddio2 pin. the v ddio2 voltage level is co mpletely independent from v dd or v dda , but it must not be provided without a valid supply on v dd . the v ddio2 supply is monitored and compared with the internal reference voltage (v refint ). when the v ddio2 is below this threshold, all the i/os supplied from this rail are disabled by hardware. the output of this comparator is connected to exti line 31 and it can be used to generate an interrupt. refer to the pinout diagrams or tables for concerned i/os list. ? v bat = 1.65 to 3.6 v: power supply for rt c, external clock 32 khz oscillator and backup registers (through power switch) when v dd is not present. for more details on how to connect power pins, refer to figure 12: power supply scheme . 3.5.2 power-on reset to guarantee a proper power-on reset, the npor pin must be held low until v dd is stable. when v dd is stable, the reset state can be exited either by: ? putting the npor pin in high impedance (npor pin has an internal pull-up), or by ? forcing the pin to high level by connecting it to v dda 3.5.3 low-power modes the stm32f078cb/rb/vb microcontrollers su pport two low-power modes to achieve the best compromise between low power consumpti on, short startup time and available wakeup sources: ? sleep mode in sleep mode, only the cpu is stopped. all peripherals continue to operate and can wake up the cpu when an interrupt/event occurs.
docid026006 rev 4 15/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 ? stop mode stop mode achieves very low power consumption while retaining the content of sram and registers. all clocks in the 1.8 v domain are stopped, the pll, the hsi rc and the hse crystal oscillators are disabled. the device can be woken up from stop mode by any of the exti lines. the exti line source can be one of the 16 external lines, rtc, i2c1, usart1, usart2, usb, compx, v ddio2 supply comparator or the cec. the cec, usart1, usart2 and i2c1 peripherals can be configured to enable the hsi rc oscillator so as to get clock for processing incoming data. note: the rtc, the iwdg, and the corresponding clock sources are not stopped by entering stop mode. 3.6 clocks and startup system clock selection is perf ormed on startup, however the internal rc 8 mhz oscillator is selected as default cpu clock on reset. an external 4-32 mhz clock can be selected, in which case it is monitored for fa ilure. if failure is detected, th e system automatically switches back to the internal rc oscillator. a software interrupt is genera ted if enabled. similarly, full interrupt management of the pll clock entry is available when necessary (for example on failure of an indirectly used extern al crystal, resona tor or oscillator). several prescalers allow the ap plication to configure the fr equency of the ahb and the apb domains. the maximum freq uency of the ahb and t he apb domains is 48 mhz. additionally, also the internal rc 48 mhz oscillator can be sele cted for system clock or pll input source. this oscillator ca n be automatically fine-trimm ed by the means of the crs peripheral using the external synchronization.
functional overview stm32f078cb, STM32F078RB, stm32f078vb 16/120 docid026006 rev 4 figure 2. clock tree 3.7 general-purpose inputs/outputs (gpios) each of the gpio pins can be configured by so ftware as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. most of the gpio pins are shared with digital or analog alternate functions. 06y9 26&b,1 26&b287 26&b,1 26&b287 ,:'* 3//08/ 0&2 0dlqforfn rxwsxw 3//&/. +6, +6( 3//&/. $'& dv\qfkurqrxv forfnlqsxw /6( /6, +6, +6( 57& 3//65& 6: 0&2 57&&/. 57&6(/ 6<6&/. 7,0  )/,7)&/. )odvkphpru\ surjudpplqj lqwhuidfh +6, +6, /6( ,& 86$57 /6( +6, 6<6&/. 3&/. 6<6&/. +6, 3&/. ,663, ,663, &(& $3% shulskhudov /6, /6( 35(',9 +6, 3//12',9 0&235( 7,0 /6( +6( 6<1& &66 7ulp /hjhqg zklwh forfnwuhhfrqwurohohphqw forfnolqh frqwuroolqh eodfn forfnwuhhhohphqw  0+] +6(26&    0+]5& +6, ? ? 0+] +6,5&   n+] /6(26& n+] /6,5& 3// [[ [ 0+] +6,5& [[   86$57[6: 335( 335( +35( &(&6:  ,&6: 6<6&/. &56 +6, +6, +6, +6, +6, 6<1&65& 86$57 +&/. $+%fruhphpru\'0$ &ruwh[)&/.iuhhuxqforfn &ruwh[ v\vwhpwlphu  86% +6, 86%6: /6( 86%62)
docid026006 rev 4 17/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 the i/o configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the i/os registers. 3.8 direct memory a ccess controller (dma) the 7-channel general-purpose dmas manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. the dma supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer. each channel is connected to dedicated hardw are dma requests, with support for software trigger on each channel. configuration is made by software and transfer sizes between source and destination are independent. dma can be used with the main peripherals: spix, i2sx, i2cx, usartx, all timx timers (except tim14), dac and adc. 3.9 interrupts and events 3.9.1 nested vectored interrupt controller (nvic) the stm32f0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of cortex ? -m0) and 4 priority levels. ? closely coupled nvic gives lo w latency interrupt processing ? interrupt entry vector table address passed directly to the core ? closely coupled nvic core interface ? allows early processing of interrupts ? processing of late arriving higher priority interrupts ? support for tail-chaining ? processor state automatically saved ? interrupt entry restored on interrupt exit with no instruction overhead this hardware block provides flexible interrupt management features with minimal interrupt latency. 3.9.2 extended interrupt/event controller (exti) the extended interrupt/event co ntroller consists of 32 edge det ector lines used to generate interrupt/event requ ests and wake-up the system. ea ch line can be independently configured to select the trig ger event (rising edge, falling edge, both) and can be masked independently. a pending register maintains t he status of the interrupt requests. the exti can detect an external line with a pulse width shorter than the internal clock period. up to 86 gpios can be connected to the 16 external interrupt lines. 3.10 analog-to-digita l converter (adc) the 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature
functional overview stm32f078cb, STM32F078RB, stm32f078vb 18/120 docid026006 rev 4 sensor, voltage reference, vbat voltage measurement) channels and performs conversions in single-shot or scan modes. in scan mode , automatic conversion is performed on a selected group of analog inputs. the adc can be served by the dma controller. an analog watchdog feature allows very precis e monitoring of the converted voltage of one, some or all selected channels. an interrupt is generated when the converted voltage is outside the programmed thresholds. 3.10.1 temperature sensor the temperature sensor (ts) generates a voltage v sense that varies linearly with temperature. the temperature sensor is internally connec ted to the adc_in16 input channel which is used to convert the sensor output voltage into a digital value. the sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. as the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only. to improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by st. the te mperature sensor factory calibration data are stored by st in the system memory area, accessible in read-only mode. 3.10.2 internal voltage reference (v refint ) the internal voltage reference (v refint ) provides a stable (bandgap) voltage output for the adc and comparators. v refint is internally connected to the adc_in17 input channel. the precise voltage of v refint is individually measured for each part by st during production test and stored in the syste m memory area. it is accessible in read-only mode. table 2. temperature sensor calibration values calibration value name description memory address ts_cal1 ts adc raw data acquired at a temperature of 30 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7b8 - 0x1fff f7b9 ts_cal2 ts adc raw data acquired at a temperature of 110 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7c2 - 0x1fff f7c3 table 3. internal voltage reference calibration values calibration value name description memory address vrefint_cal raw data acquired at a temperature of 30 c ( 5 c), v dda = 3.3 v ( 10 mv) 0x1fff f7ba - 0x1fff f7bb
docid026006 rev 4 19/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 3.10.3 v bat battery voltage monitoring this embedded hardware feature allows the application to measure the v bat battery voltage using the internal adc channel adc_in18. as the v bat voltage may be higher than v dda , and thus outside the adc input range, the v bat pin is internally connected to a bridge divider by 2. as a consequence, the converted digital value is half the v bat voltage. 3.11 digital-to-analog converter (dac) the two 12-bit buffered dac channels can be used to convert digital signals into analog voltage signal outputs. the chosen design st ructure is composed of integrated resistor strings and an amplifier in non-inverting configuration. this digital interface supports the following features: ? 8-bit or 12-bit monotonic output ? left or right data alignment in 12-bit mode ? synchronized update capability ? noise-wave generation ? triangular-wave generation ? dual dac channel independent or simultaneous conversions ? dma capability for each channel ? external triggers for conversion six dac trigger inputs are used in the device. the dac is triggered through the timer trigger outputs and the dac interface is generating its own dma requests. 3.12 comparators (comp) the device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity. the reference voltage can be one of the following: ? external i/o ? dac output pins ? internal reference voltage or submultiple (1/4, 1/2, 3/4). refer to table 25: embedded internal reference voltage for the value and precision of the internal reference voltage. both comparators can wake up from stop mode, generate interrupts and breaks for the timers and can be also combined into a window comparator. 3.13 touch sensing controller (tsc) the stm32f078cb/rb/vb devices provide a simp le solution for adding capacitive sensing functionality to any application. these device s offer up to 23 capacitive sensing channels distributed over 8 analog i/o groups. capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic ...). the capacitive variation
functional overview stm32f078cb, STM32F078RB, stm32f078vb 20/120 docid026006 rev 4 introduced by the finger (or any conduct ive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. it consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor unt il the voltage across this capa citor has reached a specific threshold. to limit the cpu bandwidth usage, this acquisition is directly managed by the hardware touch sensing controller and only r equires few external components to operate. for operation, one capacitive sensing gpio in each group is connected to an external capacitor and cannot be used as effective touch sensing channel. the touch sensing controller is fully supported by the stmtouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application. table 4. capacitive sensing gpios av ailable on stm32f078cb/rb/vb devices group capacitive sensing signal name pin name group capacitive sensing signal name pin name 1 tsc_g1_io1 pa0 5 tsc_g5_io1 pb3 tsc_g1_io2 pa1 tsc_g5_io2 pb4 tsc_g1_io3 pa2 tsc_g5_io3 pb6 tsc_g1_io4 pa3 tsc_g5_io4 pb7 2 tsc_g2_io1 pa4 6 tsc_g6_io1 pb11 tsc_g2_io2 pa5 tsc_g6_io2 pb12 tsc_g2_io3 pa6 tsc_g6_io3 pb13 tsc_g2_io4 pa7 tsc_g6_io4 pb14 3 tsc_g3_io1 pc5 7 tsc_g7_io1 pe2 tsc_g3_io2 pb0 tsc_g7_io2 pe3 tsc_g3_io3 pb1 tsc_g7_io3 pe4 4 tsc_g4_io1 pa9 tsc_g7_io4 pe5 tsc_g4_io2 pa10 8 tsc_g8_io1 pd12 tsc_g4_io3 pa11 tsc_g8_io2 pd13 tsc_g4_io4 pa12 tsc_g8_io3 pd14 tsc_g8_io4 pd15 table 5. number of capacitive sensing channels available on stm32f078cb/rb/vb devices analog i/o group number of capacitive sensing channels stm32f078vx stm32f078rx stm32f078cx g1 3 3 3 g2 3 3 3 g3 2 2 1 g4 3 3 3
docid026006 rev 4 21/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 3.14 timers and watchdogs the stm32f078cb/rb/vb devices include up to six general-purpose timers, two basic timers and an advanced control timer. table 6 compares the features of the different timers. 3.14.1 advanced-control timer (tim1) the advanced-control timer (tim1) can be seen as a three-phase pwm multiplexed on six channels. it has complementary pwm outputs with programmable inserted dead times. it g5 3 3 3 g6 3 3 3 g7 3 0 0 g8 3 0 0 number of capacitive sensing channels 23 17 16 table 5. number of capacitive sensing channels available on stm32f078cb/rb/vb devices (continued) analog i/o group number of capacitive sensing channels stm32f078vx stm32f078rx stm32f078cx table 6. timer feature comparison timer type timer counter resolution counter type prescaler factor dma request generation capture/compare channels complementary outputs advanced control tim1 16-bit up, down, up/down integer from 1 to 65536 yes 4 3 general purpose tim2 32-bit up, down, up/down integer from 1 to 65536 yes 4 - tim3 16-bit up, down, up/down integer from 1 to 65536 yes 4 - tim14 16-bit up integer from 1 to 65536 no 1 - tim15 16-bit up integer from 1 to 65536 yes 2 1 tim16 tim17 16-bit up integer from 1 to 65536 yes 1 1 basic tim6 tim7 16-bit up integer from 1 to 65536 yes - -
functional overview stm32f078cb, STM32F078RB, stm32f078vb 22/120 docid026006 rev 4 can also be seen as a complete general-purpose timer. the four independent channels can be used for: ? input capture ? output compare ? pwm generation (edge or center-aligned modes) ? one-pulse mode output if configured as a standard 16-bit timer, it has the same features as the timx timer. if configured as the 16-bit pw m generator, it has full modu lation capability (0-100%). the counter can be frozen in debug mode. many features are shared with those of the standard timers which have the same architecture. the advanced control timer can t herefore work together with the other timers via the timer link feature for sy nchronization or event chaining. 3.14.2 general-purpose timers (tim2, 3, 14, 15, 16, 17) there are six synchronizable general-purpose timers embedded in the stm32f078cb/rb/vb devices (see table 6 for differences). each general-purpose timer can be used to generate pwm outputs, or as simple time base. tim2, tim3 stm32f078cb/rb/vb devices feature two synchronizable 4-channel general-purpose timers. tim2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. tim3 is based on a 16-bit auto-reload up/downcount er and a 16-bit prescaler. they feature 4 independent channels each for input capture/output compare, pwm or one-pulse mode output. this gives up to 12 input captures/o utput compares/pwms on the largest packages. the tim2 and tim3 general-purpose timers ca n work together or with the tim1 advanced- control timer via the timer link feature for synchronization or event chaining. tim2 and tim3 both have indepen dent dma request generation. these timers are capable of handling quadrat ure (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors. their counters can be frozen in debug mode. tim14 this timer is based on a 16-bit auto-re load upcounter and a 16-bit prescaler. tim14 features one single channel for input capture/output compare, pwm or one-pulse mode output. its counter can be frozen in debug mode. tim15, tim16 and tim17 these timers are based on a 16-bit auto -reload upcounter and a 16-bit prescaler. tim15 has two independent channels, wher eas tim16 and tim17 feature one single channel for input capture/output compare, pwm or one-pulse mode output. the tim15, tim16 and tim17 timers can wo rk together, and tim15 can also operate withtim1 via the timer link feature for synchronization or event chaining.
docid026006 rev 4 23/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 tim15 can be synchronized with tim16 and tim17. tim15, tim16 and tim17 have a complement ary output with dead-time generation and independent dma request generation. their counters can be frozen in debug mode. 3.14.3 basic timers tim6 and tim7 these timers are mainly used for dac trigger gener ation. they can also be used as generic 16-bit time bases. 3.14.4 independent watchdog (iwdg) the independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. it is clocked from an independent 40 khz internal rc and as it operates independently from the main clock, it can operate in stop mode. it can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. it is hardware or software configurable through the option bytes. the counter can be frozen in debug mode. 3.14.5 system window watchdog (wwdg) the system window watchdog is based on a 7-bit downcounter that can be set as free running. it can be used as a watchdog to reset the device when a problem occurs. it is clocked from the apb clock (pclk). it has an early warning interrupt capability and the counter can be frozen in debug mode. 3.14.6 systick timer this timer is dedicated to real-time operating systems, but could also be used as a standard down counter. it features: ? a 24-bit down counter ? autoreload capability ? maskable system interrupt generation when the counter reaches 0 ? programmable clock source (hclk or hclk/8) 3.15 real-time clock (rtc ) and backup registers the rtc and the five backup registers are supplied through a switch that takes power either on v dd supply when present or through the v bat pin. the backup registers are five 32-bit registers used to store 20 bytes of user application data when v dd power is not present. they are not reset by a system or power reset.
functional overview stm32f078cb, STM32F078RB, stm32f078vb 24/120 docid026006 rev 4 the rtc is an independent bcd timer/counter. its main features are the following: ? calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in bcd (binary-coded decimal) format ? automatic correction for 28, 29 (leap year), 30, and 31 day of the month ? programmable alarm with wake up from stop mode capability ? periodic wakeup unit with programmable resolution and period. ? on-the-fly correction from 1 to 32767 rtc clock pulses. this can be used to synchronize the rtc with a master clock ? digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy ? three anti-tamper detection pins with programmable filter. the mcu can be woken up from stop mode on tamper event detection ? timestamp feature which can be used to save the calendar content. this function can be triggered by an event on the timestamp pin, or by a tamper event. the mcu can be woken up from stop mode on timestamp event detection ? reference clock detection: a more precise se cond source clock (50 or 60 hz) can be used to enhance the calendar precision the rtc clock sources can be: ? a 32.768 khz external crystal ? a resonator or oscillator ? the internal low-power rc oscillato r (typical frequency of 40 khz) ? the high-speed external clock divided by 32 3.16 inter-integrated circuit interface (i 2 c) up to two i 2 c interfaces (i2c1 and i2c2) can operate in multimaster or slave modes. both can support standard mode (up to 100 kbit/s), fast mode (up to 400 kbit/s) and fast mode plus (up to 1 mbit/s) with extra output drive on most of the associated i/os. both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). they also include programmable analog and digital noise filters. in addition, i2c1 provides hardware su pport for smbus 2.0 and pmbus 1.1: arp capability, host notify prot ocol, hardware crc ( pec) generation/verification, timeouts table 7. comparison of i 2 c analog and digital filters aspect analog filter digital filter pulse width of suppressed spikes 50 ns programmable length from 1 to 15 i2cx peripheral clocks benefits available in stop mode ?extra filtering capability vs. standard requirements ?stable length drawbacks variations depending on temperature, voltage, process wakeup from stop on address match is not available when digital filter is enabled.
docid026006 rev 4 25/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 verifications and alert protocol management. i2c1 also has a clock domain independent from the cpu clock, allowing the i2c1 to wake up the mcu from stop mode on address match. the i2c peripherals can be served by the dma controller. refer to table 8 for the differences be tween i2c1 and i2c2. 3.17 universal synchronous/asyn chronous receiver/transmitter (usart) the device embeds four universal synchr onous/asynchronous receivers/transmitters (usart1, usart2, usart3, usart4) which communicate at speeds of up to 6 mbit/s. they provide hardware management of the cts, rts and rs485 de signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. usart1 and usart2 support also smartcard communication (iso 7816), ir da sir endec, lin master/sla ve capability and auto baud rate feature, and have a clock domain independ ent of the cpu clock, allowing to wake up the mcu from stop mode. the usart interfaces can be served by the dma controller. table 8. stm32f078cb/rb/vb i 2 c implementation i 2 c features (1) 1. x = supported. i2c1 i2c2 7-bit addressing mode x x 10-bit addressing mode x x standard mode (up to 100 kbit/s) x x fast mode (up to 400 kbit/s) x x fast mode plus (up to 1 mbit/s) with extra output drive i/os x x independent clock x - smbus x - wakeup from stop x - table 9. stm32f078cb/rb/vb usart implementation usart modes/features (1) usart1 and usart2 usart3 and usart4 hardware flow control for modem x x continuous communication using dma x x multiprocessor communication x x synchronous mode x x smartcard mode x - single-wire half-duplex communication x x
functional overview stm32f078cb, STM32F078RB, stm32f078vb 26/120 docid026006 rev 4 3.18 serial peripheral interface (spi) / inter-integrated sound interface (i 2 s) two spis are able to communicate up to 18 mbit /s in slave and master modes in full-duplex and half-duplex communication modes. the 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits. two standard i 2 s interfaces (multiplexed with spi1 and spi2 respectively) supporting four different audio standards can operate as ma ster or slave at half-duplex communication mode. they can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. audio sampling frequency from 8 khz up to 192 khz can be set by an 8-bit programmable linear prescaler. when operating in master mode, they can output a clock for an extern al audio component at 256 times the sampling frequency. 3.19 high-definition multimedia interface (hdmi) - consumer electronics control (cec) the device embeds a hdmi-cec controller that provides hardware support for the consumer electronics control (cec) protoc ol (supplement 1 to the hdmi standard). this protocol provides high-level control functions between all audiovisual products in an environment. it is specified to operate at low speeds with minimum processing and memory irda sir endec block x - lin mode x - dual clock domain and wakeup from stop mode x - receiver timeout interrupt x - modbus communication x - auto baud rate detection x - driver enable x x 1. x = supported. table 9. stm32f078cb/rb/vb us art implementation (continued) usart modes/features (1) usart1 and usart2 usart3 and usart4 table 10. stm32f078cb/rb/vb spi/i 2 s implementation spi features (1) 1. x = supported. spi1 and spi2 hardware crc calculation x rx/tx fifo x nss pulse mode x i 2 s mode x ti mode x
docid026006 rev 4 27/120 stm32f078cb, STM32F078RB, stm32f078vb functional overview 27 overhead. it has a clock domain independent from the cpu clock, allowing the hdmi_cec controller to wakeup the mcu from stop mode on data reception. 3.20 universal serial bus (usb) the stm32f078cb/rb/vb embeds a full-speed usb device peripheral compliant with the usb specification version 2.0. the intern al usb phy supports usb fs signaling, embedded dp pull-up and also battery charging detection according to battery charging specification revision 1.2. t he usb interface implements a full-speed (12 mbit/s) function interface with added support for usb 2.0 link power management. it has software- configurable endpoint setting with packet memory up-to 1 kb and suspend/resume support. it requires a precise 48 mhz clock which can be generated from the internal main pll (the clock source must use an hse crystal oscillato r) or by the internal 48 mhz oscillator in automatic trimming mode. the synchronization fo r this oscillator can be taken from the usb data stream itself (sof signalization) which allows crystal-less operation. 3.21 clock recover y system (crs) the stm32f078cb/rb/vb embeds a special block which allows automatic trimming of the internal 48 mhz oscillator to guarantee its optima l accuracy over the whole device operational range. this automatic trimming is based on the external synchronization signal, which could be either derived fr om usb sof signalization, fr om lse oscillator, from an external signal on crs_sync pin or generated by user software. for faster lock-in during startup it is also possible to combine autom atic trimming with manual trimming action. 3.22 serial wire debug port (sw-dp) an arm sw-dp interface is provided to allow a serial wire debugging tool to be connected to the mcu.
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 28/120 docid026006 rev 4 4 pinouts and pin descriptions figure 3. ufbga100 package pinout 06y9 $ % & ' ( 7rsylhz ) * + ,2vxssolhgiurp9'',2         - . / 0 3( 3( 3& 3) 966$ 3) 9''$ 3( 3( 3( 3( 9%$7 3) 3) 1567 3& 3& 3$ 3$ 3% 3( 3% 966 1& 9'' 3& 3$ 3$ 3$ %227 3% 9'' 3$ 3$ 3$ 3' 3% 3% 3& 3& 3% 3' 3' 1325 3% 3% 3' 3( 3( 3% 3' 3' 3' 3( 3( 3$ 3' 3' 3' 3( 3( 3$ 3& 3& 3& 3$ 3' 3' 3% 3% 3( 3$ 3& 3) 3$ 3& 3' 3' 3% 3% 3( 9'',2 3$ 3$ 3$ 3& 3& 3' 3' 3% 3% 3( 966 9'' 3& 3& 26&b ,1 3& 26&b 287 3) 26&b ,1 3) 26&b 287 966 8)%*$    
docid026006 rev 4 29/120 stm32f078cb, STM32F078RB, stm32f078vb pinouts and pin descriptions 38 figure 4. lqfp100 package pinout 06y9 7rsylhz ,2vxssolhgiurp9'',2 /4)3                                                                                                     9'',2 966 3) 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3' 3' 3' 3' 3' 3' 3' 3' 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 1325 3( 3( 3( 3( 3( 3( 3( 3( 3( 3% 3% 966 9'' 3( 3( 3( 3( 3( 9%$7 3&26&b,1 3&26&b287 3) 3) 3)26&b,1 1567 3& 3& 3& 3& 3) 966$ 3) 9''$ 3$ 3$ 3$ 3& 3)26&b287 9'' 966 3( 3( 3% 3% %227 3% 3% 3% 3% 3% 3' 3' 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 30/120 docid026006 rev 4 figure 5. lqfp64 package pinout figure 6. lqfp48 package pinout 06y9 7rsylhz /4)3                                                                 9%$7 3&26&b,1 3)26&b,1 1567 3& 3& 3& 3& 966$ 9''$ 3$ 3$ 3$ 9'' 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3& 966 3)26&b287 3&26&b287 3$ 3$ 3& 3& 3% 3% 1325 3% 3% 966 9'' 3$ 3$ 9'' 966 3$ ,2vxssolhgiurp9'',2 06y9 3$ 3$ 3$ 3$ 3$ 3% 3% 1325 3% 3% 966 9'' 9%$7 3& 3&26&b,1 3&26&b287 3)26&b,1 3)26&b287 1567 966$ 9''$ 3$ 3$ 3$ 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 3$ 3$ 3% 3% 3% 3% 3% %227 3% 3% 966 9'' 7rsylhz /4)3                                                 ,2vxssolhgiurp9'',2
docid026006 rev 4 31/120 stm32f078cb, STM32F078RB, stm32f078vb pinouts and pin descriptions 38 figure 7. ufqfpn48 package pinout figure 8. wlcsp49 package pinout 1. the above figure shows the package in top view, c hanging from bottom view in the previous document versions. 06y9 ,2vxssolhgiurp9'',2 7rsylhz ([srvhgsdg ( [srvh g sd g 8)4)31                                                 9%$7 1567 966$ 9''$ 3$ 3$ 3& 3&26&b,1 3)26&b,1 3)26&b287 3&26&b287 3$ 3$ 3$ 3$ 3$ 3% 3% 1325 3% 3% 966 9'' 9'',2 966 3$ 3$ 3$ 3$ 3$ 3$ 3% 3% 3% 3% 9'' 966 3% 3% %227 3% 3% 3% 3% 3% 3$ 3$ 3$ 06y9 $ % & ' (      7rsylhz :/&63  ) * 9'' 966 9%$7 1& 3& 26&b ,1 3& 26&b 287 3) 26&b ,1 3) 26&b 287 ,2vxssolhgiurp9'',2 %227 3% 3% 3$ 3$ 966 9'',2 3$ 3% 3% 3% 3% 3$ 3$ 3$ 3& 3% 966 3$ 3$ 966$ 3$ 3$ 3% 3% 3% 1567 3% 9'' 3$ 3$ 3$ 3$ 9''$ 3% 3% 1325 3% 3% 3$ 3$
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 32/120 docid026006 rev 4 table 11. legend/abbreviations used in the pinout table name abbreviation definition pin name unless otherwise specified in brackets belo w the pin name, the pin function during and after reset is the same as the actual pin name pin type s supply pin i input-only pin i/o input / output pin i/o structure ft 5 v-tolerant i/o ftf 5 v-tolerant i/o, fm+ capable tta 3.3 v-tolerant i/o directly connected to adc por external power on reset pin with embedded weak pull-up resistor, powered from v dda tc standard 3.3 v i/o b dedicated boot0 pin rst bidirectional reset pin with embedded weak pull-up resistor notes unless otherwise specified by a note, all i/os are set as floating inputs during and after reset. pin functions alternate functions functions selected through gpiox_afr registers additional functions functions directly selected/enabled through peripheral registers table 12. stm32f078cb/ rb/vb pin definitions pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions b2 1 - - - pe2 i/o ft - tsc_g7_io1, tim3_etr - a1 2 - - - pe3 i/o ft - tsc_g7_io2, tim3_ch1 - b1 3 - - - pe4 i/o ft - tsc_g7_io3, tim3_ch2 - c2 4 - - - pe5 i/o ft - tsc_g7_io4, tim3_ch3 - d2 5 - - - pe6 i/o ft - tim3_ch4 wkup3, rtc_tamp3 e2 6 1 1 b7 vbat s - - backup power supply
docid026006 rev 4 33/120 stm32f078cb, STM32F078RB, stm32f078vb pinouts and pin descriptions 38 c1 7 2 2 d5 pc13 i/o tc (1) (2) - wkup2, rtc_tamp1, rtc_ts, rtc_out d1 8 3 3 c7 pc14-osc32_in (pc14) i/o tc (1) (2) - osc32_in e1 9 4 4 c6 pc15- osc32_out (pc15) i/o tc (1) (2) - osc32_out f2 10 - - - pf9 i/o ft - tim15_ch1 - g2 11 - - - pf10 i/o ft - tim15_ch2 - f1 12 5 5 d7 pf0-osc_in (pf0) i/o ft - crs_ sync osc_in g1 13 6 6 d6 pf1-osc_out (pf1) i/o ft - - osc_out h2 14 7 7 e7 nrst i/o rst - device reset input / in ternal reset output (active low) h1 15 8 - - pc0 i/o tta - eventout adc_in10 j2 16 9 - - pc1 i/o tta - eventout adc_in11 j3 17 10 - - pc2 i/o tta - spi2_miso, i2s2_mck, eventout adc_in12 k2 18 11 - - pc3 i/o tta - spi2_mosi, i2s2_sd, eventout adc_in13 j1 19 - - - pf2 i/o ft - eventout wkup8 k1 20 12 8 e6 vssa s - - analog ground m1 21 13 9 f7 vdda s - - analog power supply l1 22 - - - pf3 i/o ft - eventout l2 23 14 10 f6 pa0 i/o tta - usart2_cts, tim2_ch1_etr, tsc_g1_io1, usart4_tx rtc_ tamp2, wkup1, comp1_out, adc_in0, comp1_inm6 table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 34/120 docid026006 rev 4 m2 24 15 11 g7 pa1 i/o tta - usart2_rts, tim2_ch2, tim15_ch1n, tsc_g1_io2, usart4_rx, eventout adc_in1, comp1_inp k3 25 16 12 e5 pa2 i/o tta - usart2_tx, tim2_ch3, tim15_ch1, tsc_g1_io3 adc_in2, comp2_out, comp2_inm6, wkup4 l3 26 17 13 e4 pa3 i/o tta - usart2_rx,tim2_ch4, tim15_ch2, tsc_g1_io4 adc_in3, comp2_inp d3 27 18 - - vss s - - ground h3 28 19 - - vdd s - - digital power supply m3 29 20 14 g6 pa4 i/o tta - spi1_nss, i2s1_ws, tim14_ch1, tsc_g2_io1, usart2_ck comp1_inm4, comp2_inm4, adc_in4, dac_out1 k4 30 21 15 f5 pa5 i/o tta - spi1_sck, i2s1_ck, cec, tim2_ch1_etr, tsc_g2_io2 comp1_inm5, comp2_inm5, adc_in5, dac_out2 l4 31 22 16 f4 pa6 i/o tta - spi1_miso, i2s1_mck, tim3_ch1, tim1_bkin, tim16_ch1, comp1_out, tsc_g2_io3, eventout, usart3_cts adc_in6 m4 32 23 17 f3 pa7 i/o tta - spi1_mosi, i2s1_sd, tim3_ch2, tim14_ch1, tim1_ch1n, tim17_ch1, comp2_out, tsc_g2_io4, eventout adc_in7 k5 33 24 - - pc4 i/o tta - eventout, usart3_tx adc_in14 l5 34 25 - - pc5 i/o tta - tsc_g3_io1, usart3_rx adc_in15, wkup5 m5 35 26 18 g5 pb0 i/o tta - tim3_ch3, tim1_ch2n, tsc_g3_io2, eventout, usart3_ck adc_in8 table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
docid026006 rev 4 35/120 stm32f078cb, STM32F078RB, stm32f078vb pinouts and pin descriptions 38 m6 36 27 19 g4 pb1 i/o tta - tim3_ch4, usart3_rts, tim14_ch1, tim1_ch3n, tsc_g3_io3 adc_in9 l6 37 28 20 g3 npor i por (3) device power-on reset input (active low) m7 38 - - - pe7 i/o ft - tim1_etr - l7 39 - - - pe8 i/o ft - tim1_ch1n - m8 40 - - - pe9 i/o ft - tim1_ch1 - l8 41 - - - pe10 i/o ft - tim1_ch2n - m9 42 - - - pe11 i/o ft - tim1_ch2 - l9 43 - - - pe12 i/o ft - spi1_nss, i2s1_ws, tim1_ch3n - m10 44 - - - pe13 i/o ft - spi1_sck, i2s1_ck, tim1_ch3 - m11 45 - - - pe14 i/o ft - spi1_miso, i2s1_mck, tim1_ch4 - m12 46 - - - pe15 i/o ft - spi1_mosi, i2s1_sd, tim1_bkin - l10 47 29 21 e3 pb10 i/o ft - spi2_sck, i2c2_scl, usart3_tx, cec, tsc_sync, tim2_ch3 - l11 48 30 22 g2 pb11 i/o ft - usart3_rx, tim2_ch4, eventout, tsc_g6_io1, i2c2_sda - f12 49 31 23 d3 vss s - - ground g12 50 32 24 f2 vdd s - - digital power supply l12 51 33 25 e2 pb12 i/o ft - tim1_bkin, tim15_bkin, spi2_nss, i2s2_ws, usart3_ck, tsc_g6_io2, eventout - k12 52 34 26 g1 pb13 i/o ftf - spi2_sck, i2s2_ck, i2c2_scl, usart3_cts, tim1_ch1n, tsc_g6_io3 - table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 36/120 docid026006 rev 4 k11 53 35 27 f1 pb14 i/o ftf - spi2_miso, i2s2_mck, i2c2_sda, usart3_rts, tim1_ch2n, tim15_ch1, tsc_g6_io4 - k10 54 36 28 e1 pb15 i/o ft - spi2_mosi, i2s2_sd, tim1_ch3n, tim15_ch1n, tim15_ch2 wkup7, rtc_refin k9 55 - - - pd8 i/o ft - usart3_tx - k8 56 - - - pd9 i/o ft - usart3_rx - j12 57 - - - pd10 i/o ft - usart3_ck - j11 58 - - - pd11 i/o ft - usart3_cts - j10 59 - - - pd12 i/o ft - usart3_rts, tsc_g8_io1 - h12 60 - - - pd13 i/o ft - tsc_g8_io2 - h11 61 - - - pd14 i/o ft - tsc_g8_io3 - h10 62 - - - pd15 i/o ft - tsc_g8_io4, crs_sync - e12 63 37 - - pc6 i/o ft (4) tim3_ch1 - e11 64 38 - - pc7 i/o ft (4) tim3_ch2 - e10 65 39 - - pc8 i/o ft (4) tim3_ch3 - d12 66 40 - - pc9 i/o ft (4) tim3_ch4 - d11 67 41 29 d1 pa8 i/o ft (4) usart1_ck, tim1_ch1, eventout, mco, crs_sync - d10 68 42 30 d2 pa9 i/o ft (4) usart1_tx, tim1_ch2, tim15_bkin, tsc_g4_io1 - c12 69 43 31 c2 pa10 i/o ft (4) usart1_rx, tim1_ch3, tim17_bkin, tsc_g4_io2 - b12 70 44 32 c1 pa11 i/o ft (4) usart1_cts, tim1_ch4, comp1_out, tsc_g4_io3, eventout usb_dm table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
docid026006 rev 4 37/120 stm32f078cb, STM32F078RB, stm32f078vb pinouts and pin descriptions 38 a12 71 45 33 c3 pa12 i/o ft (4) usart1_rts, tim1_etr, comp2_out, tsc_g4_io4, eventout usb_dp a11 72 46 34 b3 pa13 i/o ft (4) (5) ir_out, swdio, usb_noe - c11 73 - - - pf6 i/o ft (4) -- f11 74 47 35 b1 vss s - - ground g11 75 48 36 b2 vddio2 s - - digital power supply a10 76 49 37 a1 pa14 i/o ft (4) (5) usart2_tx, swclk - a9 77 50 38 a2 pa15 i/o ft (4) spi1_nss, i2s1_ws, usart2_rx, usart4_rts, tim2_ch1_etr, eventout - b11 78 51 - - pc10 i/o ft (4) usart3_tx, usart4_tx - c10 79 52 - - pc11 i/o ft (4) usart3_rx, usart4_rx - b10 80 53 - - pc12 i/o ft (4) usart3_ck, usart4_ck - c9 81 - - - pd0 i/o ft (4) spi2_nss, i2s2_ws - b9 82 - - - pd1 i/o ft (4) spi2_sck, i2s2_ck - c8 83 54 - - pd2 i/o ft (4) usart3_rts, tim3_etr - b8 84 - - - pd3 i/o ft - spi2_miso, i2s2_mck, usart2_cts - b7 85 - - - pd4 i/o ft - spi2_mosi, i2s2_sd, usart2_rts - a6 86 - - - pd5 i/o ft - usart2_tx - b6 87 - - - pd6 i/o ft - usart2_rx - a5 88 - - - pd7 i/o ft - usart2_ck - a8 89 55 39 a3 pb3 i/o ft - spi1_sck, i2s1_ck, tim2_ch2, tsc_g5_io1, eventout - table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
pinouts and pin descriptions stm32f 078cb, STM32F078RB, stm32f078vb 38/120 docid026006 rev 4 a7 90 56 40 a4 pb4 i/o ft - spi1_miso, i2s1_mck, tim17_bkin, tim3_ch1, tsc_g5_io2, eventout - c5 91 57 41 b4 pb5 i/o ft - spi1_mosi, i2s1_sd, i2c1_smba, tim16_bkin, tim3_ch2 wkup6 b5 92 58 42 c4 pb6 i/o ftf - i2c1_scl, usart1_tx, tim16_ch1n, tsc_g5_i03 - b4 93 59 43 d4 pb7 i/o ftf - i2c1_sda, usart1_rx, usart4_cts, tim17_ch1n, tsc_g5_io4 - a4 94 60 44 a5 boot0 i b - boot memory selection a3 95 61 45 b5 pb8 i/o ftf - i2c1_scl, cec, tim16_ch1, tsc_sync - b3 96 62 46 c5 pb9 i/o ftf - spi2_nss, i2s2_ws, i2c1_sda, ir_out, tim17_ch1, eventout - c3 97 - - - pe0 i/o ft - eventout, tim16_ch1 - a2 98 - - - pe1 i/o ft - eventout, tim17_ch1 - d3 99 63 47 a6 vss s - - ground c4 100 64 48 a7 vdd s - - digital power supply 1. pc13, pc14 and pc15 are supplied through the power switch. si nce the switch only sinks a limited amount of current (3 ma), the use of gpios pc13 to pc15 in output mode is limited: - the speed should not exceed 2 mhz with a maximum load of 30 pf. - these gpios must not be used as current sources (e.g. to drive an led). 2. after the first rtc domain power-up, pc13, pc14 and pc15 operate as gpios. their function then depends on the content of the rtc registers which are not reset by the system reset. for details on how to manage these gpios, refer to the rtc domain and rtc register descriptions in the reference manual. 3. this pin is supplied by v dda . 4. pc6, pc7, pc8, pc9, pa8, pa9, pa10, pa11, pa12, pa13, pf6, pa14, pa15, pc10, pc11, pc12, pd0, pd1 and pd2 i/os are supplied by vddio2. 5. after reset, these pins are configured as swdio and swclk alternate functions, and the internal pull-up on the swdio pin and the internal pull-down on the swclk pin are activated. table 12. stm32f078cb/rb/vb pin definitions (continued) pin numbers pin name (function upon reset) pin type i/o structure notes pin functions ufbga100 lqfp100 lqfp64 lqfp48/ufqfpn48 wlcsp49 alternate functions additional functions
stm32f078cb, STM32F078RB, stm32f078vb docid026006 rev 4 39/120 table 13. alternate functions selected through gpioa_afr registers for port a pin name af0 af1 af2 af3 af4 af5 af6 af7 pa0 - usart2_cts tim2_ch1_etr tsc_g1_io1 usart4_tx - - comp1_out pa1 eventout usart2_rts tim2_ch2 ts c_g1_io2 usart4_rx tim15_ch1n - - pa2 tim15_ch1 usart2_tx tim2_ch3 tsc_g1_io3 - - - comp2_out pa3 tim15_ch2 usart2_rx tim2_ch4 tsc_g1_io4 - - - - pa4 spi1_nss, i2s1_ws usart 2_ck - tsc_g2_io1 tim14_ch1 - - - pa5 spi1_sck, i2s1_ck cec tim2_ch1_etr tsc_g2_io2 - - - - pa6 spi1_miso, i2s1_m ck tim3_ch1 tim1_bkin tsc_g2_io3 u sart3_cts tim16_ch1 eventout comp1_out pa7 spi1_mosi, i2s1_sd tim3_ch2 tim1_ch1n tsc _g2_io4 tim14_ch1 tim1 7_ch1 eventout comp2_out pa8 mco usart1_ck tim1_ch1 eventout crs_sync - - - pa9 tim15_bkin usart1_tx tim1_ch2 tsc_g4_io1 - - - - pa10 tim17_bkin usart1_rx t im1_ch3 tsc_g4_io2 - - - - pa11 eventout usart1_cts tim1_ch4 tsc_g4_io3 - - - comp1_out pa12 eventout usart1_rts tim1_e tr tsc_g4_io4 - - - comp2_out pa13 swdio ir_out usb_noe - - - - - pa14 swclk usart2_tx - - - - - - pa15 spi1_nss, i2s1_ws usart2_rx t im2_ch1_etr eventout usart4_rts - - -
stm32f078cb, STM32F078RB, stm32f078vb 40/120 docid026006 rev 4 table 14. alternate functions selected through gpiob_afr registers for port b pin name af0 af1 af2 af3 af4 af5 pb0 eventout tim3_ch3 tim1_ ch2n tsc_g3_io2 usart3_ck - pb1 tim14_ch1 tim3_ch4 tim1_ch3n tsc_g3_io3 usart3_rts - pb3 spi1_sck, i2s1_ck eventout tim2_ch2 tsc_g5_io1 - - pb4 spi1_miso, i2s1_mck tim3_ch1 ev entout tsc_g5_io2 - tim17_bkin pb5 spi1_mosi, i2s1_sd tim3_c h2 tim16_bkin i2c1_smba - - pb6 usart1_tx i2c1_scl tim16_ch1n tsc_g5_io3 - - pb7 usart1_rx i2c1_sda tim17_ ch1n tsc_g5_io4 usart4_cts - pb8 cec i2c1_scl tim16_ch1 tsc_sync - - pb9 ir_out i2c1_sda tim17_ch1 even tout - spi2_nss, i2s2_ws pb10 cec i2c2_scl tim2_ch3 tsc_sy nc usart3_tx spi2_sck, i2s2_ck pb11 eventout i2c2_sda tim2_ch4 tsc_g6_io1 usart3_rx - pb12 spi2_nss, i2s2_ws eventout tim1_bkin tsc_g6_ io2 usart3_ck tim15_bkin pb13 spi2_sck, i2s2_ck - tim1_ch1n tsc_g6_io3 usart3_cts i2c2_scl pb14 spi2_miso, i2s2_mck tim15_ch1 tim1 _ch2n tsc_g6_io4 usart3_rts i2c2_sda pb15 spi2_mosi, i2s2_sd tim15 _ch2 tim1_ch3n tim15_ch1n - -
docid026006 rev 4 41/120 stm32f078cb, STM32F078RB, stm32f078vb 42 table 15. alternate functions selected through gpioc_afr registers for port c pin name af0 af1 pc0 eventout - pc1 eventout - pc2 eventout spi2_miso, i2s2_mck pc3 eventout spi2_mosi, i2s2_sd pc4 eventout usart3_tx pc5 tsc_g3_io1 usart3_rx pc6 tim3_ch1 - pc7 tim3_ch2 - pc8 tim3_ch3 - pc9 tim3_ch4 - pc10 usart4_tx usart3_tx pc11 usart4_rx usart3_rx pc12 usart4_ck usart3_ck pc13 - - pc14 - - pc15 - - table 16. alternate functions selected through gpiod_afr registers for port d pin name af0 af1 pd0 - spi2_nss, i2s2_ws pd1 - spi2_sck, i2s2_ck pd2 tim3_etr usart3_rts pd3 usart2_cts spi2_miso, i2s2_mck pd4 usart2_rts spi2_mosi, i2s2_sd pd5 usart2_tx - pd6 usart2_rx - pd7 usart2_ck - pd8 usart3_tx - pd9 usart3_rx - pd10 usart3_ck - pd11 usart3_cts - pd12 usart3_rts tsc_g8_io1 pd13 - tsc_g8_io2 pd14 - tsc_g8_io3 pd15 crs_sync tsc_g8_io4
stm32f078cb, STM32F078RB, stm32f078vb 42/120 docid026006 rev 4 table 17. alternate functions selected through gpioe_afr registers for port e pin name af0 af1 pe0 tim16_ch1 eventout pe1 tim17_ch1 eventout pe2 tim3_etr tsc_g7_io1 pe3 tim3_ch1 tsc_g7_io2 pe4 tim3_ch2 tsc_g7_io3 pe5 tim3_ch3 tsc_g7_io4 pe6 tim3_ch4 - pe7 tim1_etr - pe8 tim1_ch1n - pe9 tim1_ch1 - pe10 tim1_ch2n - pe11 tim1_ch2 - pe12 tim1_ch3n spi1_nss, i2s1_ws pe13 tim1_ch3 spi1_sck, i2s1_ck pe14 tim1_ch4 spi1_miso, i2s1_mck pe15 tim1_bkin spi1_mosi, i2s1_sd table 18. alternate functions available on port f pin name af pf0 crs_sync pf1 - pf2 eventout pf3 eventout pf6 - pf9 tim15_ch1 pf10 tim15_ch2
docid026006 rev 4 43/120 stm32f078cb, STM32F078RB, stm32f078vb memory mapping 45 5 memory mapping figure 9. stm32f078cb/rb/vb memory map 069 $+%         [)))))))) 3hulskhudov 65$0 )odvkphpru\ 5hvhuyhg 6\vwhpphpru\ 2swlrq%\whv [( )odvkv\vwhp phpru\ru65$0 ghshqglqjrq%227 frqiljxudwlrq [ [( [& [$ [ [ [ [ [ [ [ [)))& [)))) [))))))) [ 5hvhuyhg &2'( $3% $3% 5hvhuyhg [ [ [ [ 5hvhuyhg [ $+% [ 5hvhuyhg [)) [)) &ruwh[0lqwhuqdo shulskhudov 5hvhuyhg [))))& 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg 5hvhuyhg
memory mapping stm32f078cb, STM32F078RB, stm32f078vb 44/120 docid026006 rev 4 table 19. stm32f078cb/rb/vb peripheral register boundary addresses bus boundary address size peripheral 0x4800 1800 - 0x5fff ffff ~384 mb reserved ahb2 0x4800 1400 - 0x4800 17ff 1 kb gpiof 0x4800 1000 - 0x4800 13ff 1 kb gpioe 0x4800 0c00 - 0x4800 0fff 1 kb gpiod 0x4800 0800 - 0x4800 0bff 1 kb gpioc 0x4800 0400 - 0x4800 07ff 1 kb gpiob 0x4800 0000 - 0x4800 03ff 1 kb gpioa 0x4002 4400 - 0x47ff ffff ~128 mb reserved ahb1 0x4002 4000 - 0x4002 43ff 1 kb tsc 0x4002 3400 - 0x4002 3fff 3 kb reserved 0x4002 3000 - 0x4002 33ff 1 kb crc 0x4002 2400 - 0x4002 2fff 3 kb reserved 0x4002 2000 - 0x4002 23ff 1 kb flash memory interface 0x4002 1400 - 0x4002 1fff 3 kb reserved 0x4002 1000 - 0x4002 13ff 1 kb rcc 0x4002 0400 - 0x4002 0fff 3 kb reserved 0x4002 0000 - 0x4002 03ff 1 kb dma 0x4001 8000 - 0x4001 ffff 32 kb reserved apb 0x4001 5c00 - 0x4001 7fff 9 kb reserved 0x4001 5800 - 0x4001 5bff 1 kb dbgmcu 0x4001 4c00 - 0x4001 57ff 3 kb reserved 0x4001 4800 - 0x4001 4bff 1 kb tim17 0x4001 4400 - 0x4001 47ff 1 kb tim16 0x4001 4000 - 0x4001 43ff 1 kb tim15 0x4001 3c00 - 0x4001 3fff 1 kb reserved 0x4001 3800 - 0x4001 3bff 1 kb usart1 0x4001 3400 - 0x4001 37ff 1 kb reserved 0x4001 3000 - 0x4001 33ff 1 kb spi1/i2s1 0x4001 2c00 - 0x4001 2fff 1 kb tim1 0x4001 2800 - 0x4001 2bff 1 kb reserved 0x4001 2400 - 0x4001 27ff 1 kb adc 0x4001 0800 - 0x4001 23ff 7 kb reserved 0x4001 0400 - 0x4001 07ff 1 kb exti 0x4001 0000 - 0x4001 03ff 1 kb syscfg + comp 0x4000 8000 - 0x4000 ffff 32 kb reserved
docid026006 rev 4 45/120 stm32f078cb, STM32F078RB, stm32f078vb memory mapping 45 apb 0x4000 7c00 - 0x4000 7fff 1 kb reserved 0x4000 7800 - 0x4000 7bff 1 kb cec 0x4000 7400 - 0x4000 77ff 1 kb dac 0x4000 7000 - 0x4000 73ff 1 kb pwr 0x4000 6c00 - 0x4000 6fff 1 kb crs 0x4000 6400 - 0x4000 6bff 2 kb reserved 0x4000 6000 - 0x4000 63ff 1 kb usb ram 0x4000 5c00 - 0x4000 5fff 1 kb usb 0x4000 5800 - 0x4000 5bff 1 kb i2c2 0x4000 5400 - 0x4000 57ff 1 kb i2c1 0x4000 5000 - 0x4000 53ff 1 kb reserved 0x4000 4c00 - 0x4000 4fff 1 kb usart4 0x4000 4800 - 0x4000 4bff 1 kb usart3 0x4000 4400 - 0x4000 47ff 1 kb usart2 0x4000 3c00 - 0x4000 43ff 2 kb reserved 0x4000 3800 - 0x4000 3bff 1 kb spi2 0x4000 3400 - 0x4000 37ff 1 kb reserved 0x4000 3000 - 0x4000 33ff 1 kb iwdg 0x4000 2c00 - 0x4000 2fff 1 kb wwdg 0x4000 2800 - 0x4000 2bff 1 kb rtc 0x4000 2400 - 0x4000 27ff 1 kb reserved 0x4000 2000 - 0x4000 23ff 1 kb tim14 0x4000 1800 - 0x4000 1fff 2 kb reserved 0x4000 1400 - 0x4000 17ff 1 kb tim7 0x4000 1000 - 0x4000 13ff 1 kb tim6 0x4000 0800 - 0x4000 0fff 2 kb reserved 0x4000 0400 - 0x4000 07ff 1 kb tim3 0x4000 0000 - 0x4000 03ff 1 kb tim2 table 19. stm32f078cb/rb/vb peripheral register boundary addresses (continued) bus boundary address size peripheral
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 46/120 docid026006 rev 4 6 electrical characteristics 6.1 parameter conditions unless otherwise specified, all voltages are referenced to v ss . 6.1.1 minimum and maximum values unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at t a = 25 c and t a = t a max (given by the selected temperature range). data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3 ). 6.1.2 typical values unless otherwise specified, typical data are based on t a = 25 c, v dd = 1.8 v and v dda = 3.3 v. they are given only as design guidelines and are not tested. typical adc accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2 ). 6.1.3 typical curves unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 loading capacitor the loading conditions used for pin parameter measurement are shown in figure 10 . 6.1.5 pin input voltage the input voltage measurement on a pin of the device is described in figure 11 . figure 10. pin loading conditions figure 11. pin input voltage 069 0&8slq & s) 069 0&8slq 9 ,1
docid026006 rev 4 47/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.1.6 power supply scheme figure 12. power supply scheme caution: each power supply pair (v dd /v ss , v dda /v ssa etc.) must be decoupled with filtering ceramic capacitors as shown above. these capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the pcb to ensure the good functionality of the device. 9 '' 9 '',2 /hyhovkliwhu ,2 orjlf .huqhoorjlf &38'ljlwdo 0hprulhv %dfnxsflufxlwu\ /6(57& %dfnxsuhjlvwhuv ,1 287 *3,2v 9 ,1 287 *3,2v [q) [?) q) /hyhovkliwhu ,2 orjlf ?) 9 '',2 9 66 [9 66 [9 '' 9 %$7 9 &25( 3rzhuvzlwfk 1325 9 '',2 9 '',2 $'& '$& $qdorj 5&v3//? 9 5() 9 5() 9 ''$ q) ?) 9 ''$ 9 66$ 069
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 48/120 docid026006 rev 4 6.1.7 current consumption measurement figure 13. current consum ption measurement scheme 069 9 %$7 9 '' 9 ''$ , '' , ''$ , ''b9%$7 9 '',2
docid026006 rev 4 49/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.2 absolute maximum ratings stresses above the absolute maximum ratings listed in table 20: voltage characteristics , table 21: current characteristics and table 22: thermal characteristics may cause permanent damage to the device. these are stress ratings only and functional operation of the device at these conditions is not implied. exposure to maximum rating conditions for extended periods may af fect device reliability. table 20. voltage characteristics (1) 1. all main power (v dd , v dda ) and ground (v ss , v ssa ) pins must always be connected to the external power supply, in the permitted range. symbol ratings min max unit v dd ?v ss external main supply voltage ? 0.3 1.95 v v ddio2 ?v ss external i/o supply voltage - 0.3 4.0 v v dda ?v ss external analog supply voltage - 0.3 4.0 v v dd ?v dda allowed voltage difference for v dd > v dda -0.4v v bat ?v ss external backup supply voltage - 0.3 4.0 v v in (2) 2. v in maximum must always be respected. refer to table 21: current characteristics for the maximum allowed injected current values. input voltage on ft and ftf pins v ss ? 0.3 v ddiox + 4.0 (3) 3. valid only if the internal pull-up/pul l-down resistors are disabled. if inter nal pull-up or pull-down resistor is enabled, the maximum limit is 4 v. v input voltage on por pins v ss ? 0.3 4.0 v input voltage on tta pins v ss ? 0.3 4.0 v boot0 0 9.0 v input voltage on any other pin v ss ? 0.3 4.0 v | ? v ddx | variations between different v dd power pins - 50 mv |v ssx - v ss | variations between all the different ground pins -50mv v esd(hbm) electrostatic discharge voltage (human body model) see section 6.3.11: electrical sensitivity characteristics -
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 50/120 docid026006 rev 4 table 21. current characteristics symbol ratings max. unit i vdd total current into sum of all vdd power lines (source) (1) 120 ma i vss total current out of sum of all vss ground lines (sink) (1) -120 i vdd(pin) maximum current into each vdd power pin (source) (1) 100 i vss(pin) maximum current out of each vss ground pin (sink) (1) -100 i io(pin) output current sunk by any i/o and control pin 25 output current source by any i/o and control pin -25 i io(pin) total output current sunk by su m of all i/os and control pins (2) 80 total output current sourced by su m of all i/os and control pins (2) -80 total output current sourced by sum of all i/os supplied by vddio2 -40 i inj(pin) (3) injected current on por, b, ft and ftf pins -5/+0 (4) injected current on tc and rst pin 5 injected current on tta pins (5) 5 i inj(pin) total injected current (sum of all i/o and control pins) (6) 25 1. all main power (vdd, vdda) and ground (vss, vssa) pins must always be connected to the external power supply, in the permitted range. 2. this current consumption must be correctly distributed over all i/os and control pins. the total output current must not be sunk/sourced between two c onsecutive power supply pins referr ing to high pin count qfp packages. 3. a positive injection is induced by v in > v ddiox while a negative injection is induced by v in < v ss . i inj(pin) must never be exceeded. refer to table 20: voltage characteristics for the maximum allowed input voltage values. 4. positive injection is not possible on these i/os and does not occur for input voltages lower than the specified maximum value. 5. on these i/os, a positive injection is induced by v in > v dda . negative injection disturbs the analog performance of the device. see note (2) below table 57: adc accuracy . 6. when several inputs are submitted to a current injection, the maximum i inj(pin) is the absolute sum of the positive and negative injected currents (instantaneous values). table 22. thermal characteristics symbol ratings value unit t stg storage temperature range ?65 to +150 c t j maximum junction temperature 150 c
docid026006 rev 4 51/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.3 operating conditions 6.3.1 general operating conditions 6.3.2 operating conditions at power-up / power-down the parameters given in table 24 are derived from tests performed under the ambient temperature condition summarized in table 23 . table 23. general operating conditions symbol parameter conditions min max unit f hclk internal ahb clock frequency - 0 48 mhz f pclk internal apb clock frequency - 0 48 v dd standard operating voltage - 1.65 1.95 v v ddio2 i/o supply voltage must not be supplied if v dd is not present 1.65 3.6 v v dda analog operating voltage (adc and dac not used) must have a potential equal to or higher than v dd v dd 3.6 v analog operating voltage (adc and dac used) 2.4 3.6 v bat backup operating voltage - 1.65 3.6 v v in i/o input voltage tc and rst i/o ?0.3 v ddiox +0.3 v tta and por i/o ?0.3 v dda +0.3 (1) ft and ftf i/o ?0.3 5.2 (1) boot0 0 5.2 p d power dissipation at t a = 85 c for suffix 6 or t a = 105 c for suffix 7 (2) ufbga100 - 364 mw lqfp100 - 476 lqfp64 - 455 lqfp48 - 370 ufqfpn48 - 625 wlcsp49 - 408 t a ambient temperature for the suffix 6 version maximum power dissipation ?40 85 c low power dissipation (3) ?40 105 ambient temperature for the suffix 7 version maximum power dissipation ?40 105 c low power dissipation (3) ?40 125 t j junction temperature range suffix 6 version ?40 105 c suffix 7 version ?40 125 1. for operation with a voltage higher than v ddiox + 0.3 v, the internal pull-up resistor must be disabled. 2. if t a is lower, higher p d values are allowed as long as t j does not exceed t jmax . see section 7.7: thermal characteristics . 3. in low power dissipation state, t a can be extended to this range as long as t j does not exceed t jmax (see section 7.7: thermal characteristics ).
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 52/120 docid026006 rev 4 6.3.3 embedded reference voltage the parameters given in table 25 are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . 6.3.4 supply current characteristics the current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, i/o pi n loading, device software configuration, operating frequencies, i/o pin switching rate, program location in memory and executed binary code. the current consumption is measured as described in figure 13: current consumption measurement scheme . all run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to coremark code. table 24. operating conditions at power-up / power-down symbol parameter conditions min max unit t vdd v dd rise time rate - 0 s/v v dd fall time rate 20 t vdda v dda rise time rate - 0 v dda fall time rate 20 table 25. embedded internal reference voltage symbol parameter conditions min typ max unit v refint internal reference voltage ?40 c < t a < +105 c 1.2 1.23 1.25 v t start adc_in17 buffer startup time ---10 (1) s t s_vrefint adc sampling time when reading the internal reference voltage - 4 (1) 1. guaranteed by design, not tested in production. -- s ? v refint internal refe rence voltage spread over the temperature range v dda = 3 v - - 10 (1) mv t coeff temperature coefficient - - 100 (1) - 100 (1) ppm/c t vrefint_rdy (2) 2. guaranteed by design, not tested in production. this parameter is the latency between the time when pin npor is set to 1 by the application and the time when the vrefintrdyf status bit is set to 1 by the hardware. internal refe rence voltage temporization - 1.5 2.5 4.5 ms
docid026006 rev 4 53/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 typical and maximum current consumption the mcu is placed under the following conditions: ? all i/o pins are in analog input mode ? all peripherals are disabled ex cept when explicitly mentioned ? the flash memory access time is adjusted to the f hclk frequency: ? 0 wait state and prefetch off from 0 to 24 mhz ? 1 wait state and prefetch on above 24 mhz ? when the peripherals are enabled f pclk = f hclk the parameters given in table 26 to table 30 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . table 26. typical and maximum current consumption from v dd supply at v dd = 1.8 v symbol parameter conditions f hclk all peripherals enabled (1) all peripherals disabled unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dd supply current in run mode, code executing from flash memory hsi48 48 mhz 23.0 24.8 25.8 26.7 12.9 13.7 14.1 15.3 ma hse bypass, pll on 48 mhz 22.9 24.6 25.7 26.6 12.8 13.6 13.9 15.2 32 mhz 15.5 16.6 17.2 19.1 8.7 9.2 9.4 10.0 24 mhz 12.0 12.8 13.2 14.3 6.8 7.2 7.3 7.7 hse bypass, pll off 8 mhz 4.2 4.4 4.5 4.6 2.4 2.6 2.6 2.7 1 mhz 0.7 0.9 1.0 1.1 0.5 0.6 0.7 0.7 hsi clock, pll on 48 mhz 22.9 24.6 25.7 27.6 12.8 13.6 13.9 15.2 32 mhz 15.5 16.6 17.2 19.1 8.7 9.2 9.4 10.0 24 mhz 12.0 12.8 13.2 14.3 6.8 7.2 7.3 7.7 hsi clock, pll off 8 mhz 4.2 4.4 4.5 4.6 2.4 2.6 2.6 2.7
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 54/120 docid026006 rev 4 i dd supply current in run mode, code executing from ram hsi48 48 mhz 22.1 23.8 25.0 25.9 11.9 12.7 13.1 13.6 ma hse bypass, pll on 48 mhz 21.9 23.6 (3) 24.8 25.7 (3) 11.8 12.5 (3) 12.9 13.5 (3) 32 mhz 14.8 15.9 16.5 18.2 7.9 8.4 8.6 9.8 24 mhz 11.3 12.0 12.4 13.7 6.0 6.4 6.6 7.3 hse bypass, pll off 8 mhz 3.8 4.0 4.1 3.9 2.0 2.2 2.2 2.3 1 mhz 0.5 0.6 0.6 0.7 0.2 0.4 0.4 0.4 hsi clock, pll on 48 mhz 21.9 23.6 24.7 2 5.0 11.8 12.5 12.9 13.5 32 mhz 14.8 15.9 16.5 18.2 7.9 8.4 8.6 9.8 24 mhz 11.3 12.0 12.4 13.7 6.0 6.4 6.6 7.3 hsi clock, pll off 8 mhz 3.8 4.0 4.1 4.2 2.0 2.2 2.2 2.3 i dd supply current in sleep mode hsi48 48 mhz 14.5 15.6 16.2 16.9 3.0 3.3 3.3 3.6 ma hse bypass, pll on 48 mhz 14.3 15.4 (3) 16.1 16.8 (3) 2.9 3.1 (3) 3.2 3.4 (3) 32 mhz 9.7 10.4 10.7 11.6 1.9 2.1 2.2 2.3 24 mhz 7.4 7.9 8.2 8.5 1.5 1.7 1.7 1.8 hse bypass, pll off 8 mhz 2.5 2.7 2.7 2.9 0.5 0.6 0.6 0.7 1 mhz 0.3 0.4 0.4 0.4 0.1 0.2 0.2 0.2 hsi clock, pll on 48 mhz 14.3 15.4 16.1 16.8 2.9 3.1 3.2 3.4 32 mhz 9.7 10.4 10.7 11.6 1.9 2.1 2.2 2.3 24 mhz 7.4 7.9 8.2 8.8 1.5 1.7 1.7 1.8 hsi clock, pll off 8 mhz 2.5 2.7 2.7 2.9 0.5 0.6 0.6 0.7 1. usb is kept disabled as this ip functions only with a 48 mhz clock. 2. data based on characterization results, not te sted in production unless otherwise specified. 3. data based on characterization results and tested in produc tion (using one common test limit for sum of idd and idda). table 26. typical and maximum current consumption from v dd supply at v dd = 1.8 v (continued) symbol parameter conditions f hclk all peripherals enabled (1) all peripherals disabled unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c
docid026006 rev 4 55/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 table 27. typical and maximum current consumption from the v dda supply symbol para-meter conditions (1) f hclk v dda = 2.4 v v dda = 3.6 v unit typ max @ t a (2) typ max @ t a (2) 25 c 85 c 105 c 25 c 85 c 105 c i dda supply current in run or sleep mode, code executing from flash memory or ram hsi48 48 mhz 309 325 328 332 320 335 339 348 a hse bypass, pll on 48 mhz 151 169 (3) 177 180 (3) 163 181 (3) 192 196 (3) 32 mhz 103 119 124 126 112 127 133 135 24 mhz 81 95 98 100 87 100 105 107 hse bypass, pll off 8 mhz 1.6 2.8 3.0 3.3 2.1 3.2 3.4 3.9 1 mhz 1.6 2.8 3.0 3.3 2.0 3.2 3.4 3.9 hsi clock, pll on 48 mhz 217 238 249 253 238 259 272 278 32 mhz 170 189 197 200 187 205 214 218 24 mhz 146 164 170 173 162 178 186 189 hsi clock, pll off 8 mhz 67 76 79 80 77 86 89 90 1. current consumption from the v dda supply is independent of whether the digita l peripherals are enabled or disabled, being in run or sleep mode or executing from flash memo ry or ram. furthermore, when the pll is off, i dda is independent from the frequency. 2. data based on characterization results, not te sted in production unless otherwise specified. 3. data based on characterization results and tested in produc tion (using one common test limit for sum of idd and idda). table 28. typical and maximum current consumption from the v bat supply symbol parameter conditions typ @ v bat max (1) unit 1.65 v 1.8 v 2.4 v 2.7 v 3.3 v 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd_vbat rtc domain supply current lse & rtc on; ?xtal mode?: lower driving capability; lsedrv[1:0] = '00' 0.5 0.6 0.7 0.8 1.1 1.2 1.3 1.7 2.3 a lse & rtc on; ?xtal mode? higher driving capability; lsedrv[1:0] = '11' 0.8 0.9 1.1 1.2 1.4 1.6 1.7 2.1 2.8 1. data based on characterization results, not tested in production.
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 56/120 docid026006 rev 4 typical current consumption the mcu is placed under the following conditions: ? v dd = v dda = 1.8 v ? all i/o pins are in analog input configuration ? the flash memory access time is adjusted to f hclk frequency: ? 0 wait state and prefetch off from 0 to 24 mhz ? 1 wait state and prefetch on above 24 mhz ? when the peripherals are enabled, f pclk = f hclk ? pll is used for frequencies greater than 8 mhz ? ahb prescaler of 2, 4, 8 and 16 is used for the frequencies 4 mhz, 2 mhz, 1 mhz and 500 khz respectively table 29. typical current consumption, code executing from flash memory, running from hse 8 mhz crystal symbol parameter f hclk typical consumption in run mode typical consumption in sleep mode unit peripherals enabled peripherals disabled peripherals enabled peripherals disabled i dd current consumption from v dd supply 48 mhz 22.0 12.7 14.2 3.2 ma 36 mhz 17.1 9.9 10.8 2.5 32 mhz 15.4 8.9 9.7 2.2 24 mhz 11.9 7.0 7.5 1.8 16 mhz 8.3 4.9 5.2 1.3 8 mhz 4.4 2.7 2.7 0.7 4 mhz 2.7 1.7 1.8 0.6 2 mhz 1.6 1.1 1.2 0.6 1 mhz 1.1 0.8 0.9 0.5 500 khz 0.9 0.7 0.8 0.5 i dda current consumption from v dda supply 48 mhz 143 a 36 mhz 112 32 mhz 102 24 mhz 81 16 mhz 59 8 mhz 1 4 mhz 1 2 mhz 1 1 mhz 1 500 khz 1
docid026006 rev 4 57/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 i/o system current consumption the current consumption of the i/o system has two components: static and dynamic. i/o static current consumption all the i/os used as inputs with pull-up ge nerate current consumpt ion when the pin is externally held low. the value of this current consumption can be simply computed by using the pull-up/pull-down resi stors values given in table 50: i/o static characteristics . for the output pins, any external pull-down or external load must also be considered to estimate the current consumption. additional i/o current consumption is due to i/os configured as inputs if an intermediate voltage level is externally applie d. this current consumption is caused by the input schmitt trigger circuits used to discriminate the input va lue. unless this spec ific configuration is required by the application, this supply curr ent consumption can be avoided by configuring these i/os in analog mode. this is notably the case of adc input pins which should be configured as analog inputs. caution: any floating input pin can also settle to an in termediate voltage level or switch inadvertently, as a result of external electromagnetic nois e. to avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. this can be done either by usin g pull-up/down resistors or by configuring the pins in output mode. i/o dynamic current consumption in addition to the internal peripheral current consumption measured previously (see table 32: peripheral current consumption ), the i/os used by an application also contribute to the current consumption. when an i/o pin switches, it uses the current from the i/o supply voltage to supply the i/o pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin: where i sw is the current sunk by a switching i/ o to charge/discharge the capacitive load v ddiox is the i/o supply voltage f sw is the i/o switching frequency c is the total capacitance seen by the i/o pin: c = c int + c ext + c s c s is the pcb board capacitance including the pad pin. table 30. typical and maximum consumption in stop mode symbol parameter conditions typ @ v dda (v dd = 1.8 v) max unit = 1.8 v = 2.0 v = 2.4 v = 2.7 v = 3.0 v = 3.3 v = 3.6 v t a = 25 c t a = 85 c t a = 105 c i dd supply current in stop mode all oscillators off 0.5 2.1 15.4 37.0 a i dda 1.0 1.0 1.0 1.0 1.1 1.1 1.2 1.6 2.6 3.4 i sw v ddiox f sw c =
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 58/120 docid026006 rev 4 the test pin is configured in push-pull output mode and is toggled by software at a fixed frequency. table 31. switching output i/o current consumption symbol parameter conditions (1) 1. c s = 5 pf (estimated value). i/o toggling frequency (f sw ) typ unit i sw i/o current consumption v ddiox = 1.8 v c ext = 0 pf c = c int + c ext + c s 2 mhz 0.09 ma 4 mhz 0.17 8 mhz 0.34 18 mhz 0.79 36 mhz 1.50 48 mhz 2.06 v ddiox = 1.8 v c ext = 10 pf c = c int + c ext + c s 2 mhz 0.13 4 mhz 0.26 8 mhz 0.50 18 mhz 1.18 36 mhz 2.27 48 mhz 3.03 v ddiox = 1.8 v c ext = 22 pf c = c int + c ext + c s 2 mhz 0.18 4 mhz 0.36 8 mhz 0.69 18 mhz 1.60 36 mhz 3.27 v ddiox = 1.8 v c ext = 33 pf c = c int + c ext + c s 2 mhz 0.23 4 mhz 0.45 8 mhz 0.87 18 mhz 2.0 36 mhz 3.7 v ddiox = 1.8 v c ext = 47 pf c = c int + c ext + c s 2 mhz 0.29 4 mhz 0.55 8 mhz 1.09 18 mhz 2.43
docid026006 rev 4 59/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 on-chip peripheral current consumption the current consumption of the on -chip peripherals is given in table 32 . the mcu is placed under the following conditions: ? all i/o pins are in analog mode ? all peripherals are disabled unless otherwise mentioned ? the given value is calculated by measuring the current consumption ? with all peripherals clocked off ? with only one peripheral clocked on ? ambient operating temperature and supply voltage conditions summarized in table 20: voltage characteristics ? the power consumption of the digital part of the on-chip peripherals is given in table 32 . the power consumption of the analog part of the peripherals (where applicable) is indicated in each related section of the datasheet. table 32. peripheral current consumption peripheral typical consumption at 25 c unit ahb busmatrix (1) 2.2 a/mhz crc 1.6 dma 5.7 flash memory interface 13.0 gpioa 8.2 gpiob 8.5 gpioc 2.3 gpiod 1.9 gpioe 2.2 gpiof 1.2 sram 0.9 tsc 5.0 all ahb peripherals 52.6
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 60/120 docid026006 rev 4 apb apb-bridge (2) 2.8 a/mhz adc (3) 4.1 cec 1.5 crs 0.8 dac (3) 4.7 debug (mcu debug feature) 0.1 i2c1 3.9 i2c2 4.0 pwr 1.3 spi1 8.7 spi2 8.5 syscfg & comp 1.7 tim1 14.9 tim2 15.5 tim3 11.4 tim6 2.5 tim7 2.3 tim14 5.3 tim15 9.1 tim16 6.6 tim17 6.8 usart1 17.0 usart2 16.7 usart3 5.4 usart4 5.4 usb 7.2 wwdg 1.4 all apb peripherals 169.6 1. the busmatrix is automatically active when at least one master is on (cpu, dma). 2. the apb bridge is automatically active when at least one peripheral is on on the bus. 3. the power consumption of the analog part (i dda ) of peripherals such as adc, dac, comparators, is not included. refer to the tables of char acteristics in the subsequent sections. table 32. peripheral current consumption (continued) peripheral typical consumption at 25 c unit
docid026006 rev 4 61/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.3.5 wakeup time from low-power mode the wakeup times given in table 33 are the latency between the event and the execution of the first user instruction. the device goes in low-power mode after the wfe (wait for event) instruction, in the case of a wfi (wai t for interruption) inst ruction, 16 cpu cycles must be added to the following timings due to the interrupt latency in the cortex m0 architecture. the sysclk clock source setti ng is kept unchanged afte r wakeup from sleep mode. during wakeup from stop mode, sysclk takes the default setting: hsi 8 mhz. the wakeup source from sleep and stop mode is an exti line configured in event mode. all timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . 6.3.6 external clock source characteristics high-speed external user clock generated from an external source in bypass mode the hse oscillator is switched off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.13 . however, the recommended clock inpu t waveform is shown in figure 14: high-speed external clock source ac timing diagram . table 33. low-power mode wakeup timings symbol parameter typ @ v dda max unit = 1.8 v = 3.3 v t wustop wakeup from stop mode 3.5 2.8 5.3 s t wusleep wakeup from sleep mode 4 sysclk cycles - s table 34. high-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. min typ max unit f hse_ext user external clock source frequency - 8 32 mhz v hseh osc_in input pin high level voltage 0.7 v ddiox -v ddiox v v hsel osc_in input pin low level voltage v ss - 0.3 v ddiox t w(hseh) t w(hsel) osc_in high or low time 15 - - ns t r(hse) t f(hse) osc_in rise or fall time - - 20
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 62/120 docid026006 rev 4 figure 14. high-speed external clock source ac timing diagram low-speed external user clock generated from an external source in bypass mode the lse oscillator is switch ed off and the input pin is a standard gpio. the external clock signal has to respect the i/o characteristics in section 6.3.13 . however, the recommended clock inpu t waveform is shown in figure 15 . figure 15. low-speed external clock source ac timing diagram table 35. low-speed external user clock characteristics symbol parameter (1) 1. guaranteed by design, not tested in production. min typ max unit f lse_ext user external clock source frequency - 32.768 1000 khz v lseh osc32_in input pin high level voltage 0.7 v ddiox -v ddiox v v lsel osc32_in input pin low level voltage v ss - 0.3 v ddiox t w(lseh) t w(lsel) osc32_in high or low time 450 - - ns t r(lse) t f(lse) osc32_in rise or fall time - - 50 069 9 +6(+ w i +6(   7 +6( w w u +6( 9 +6(/ w z +6(+ w z +6(/ 069 9 /6(+ w i /6(   7 /6( w w u /6( 9 /6(/ w z /6(+ w z /6(/
docid026006 rev 4 63/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 high-speed external clock generated from a crystal/ceramic resonator the high-speed external (hse) clock can be supplied with a 4 to 32 mhz crystal/ceramic resonator oscillator. all the information given in this pa ragraph are bas ed on design simulation results obtained with typical external components specified in table 36 . in the application, the resonator and the load capacito rs have to be placed as close as possible to the oscillator pins in order to minimize outpu t distortion and startup stabilization time. refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, pack age, accuracy). for c l1 and c l2 , it is recommended to use high-quality external ceramic capacitors in the 5 pf to 20 pf range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see figure 16 ). c l1 and c l2 are usually the same size. the crystal manufacturer typically specifies a load capacitance which is the series combination of c l1 and c l2 . pcb and mcu pin capacitance must be included (10 pf can be used as a rough estimate of the comb ined pin and board capacitance) when sizing c l1 and c l2 . note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com . table 36. hse oscilla tor characteristics symbol parameter conditions (1) 1. resonator characteristics given by the crystal/ceramic resonator manufacturer. min (2) typ max (2) 2. guaranteed by design, not tested in production. unit f osc_in oscillator frequency - 4 8 32 mhz r f feedback resistor - - 200 - k ? i dd hse current consumption during startup (3) 3. this consumption level occurs during the first 2/3 of the t su(hse) startup time --8.5 ma v dd = 1.8 v, rm = 30 ? , cl = 10 pf@8 mhz -0.4- v dd = 1.8 v, rm = 45 ? , cl = 10 pf@8 mhz -0.5- v dd = 1.8 v, rm = 30 ? , cl = 5 pf@32 mhz -0.8- v dd = 1.8 v, rm = 30 ? , cl = 10 pf@32 mhz -1- v dd = 1.8 v, rm = 30 ? , cl = 20 pf@32 mhz -1.5- g m oscillator transconductance startup 10 - - ma/v t su(hse) (4) 4. t su(hse) is the startup time measured from the moment it is enabled (by software) to a stabilized 8 mhz oscillation is reached. this value is measured for a standard crystal resonat or and it can vary significantly with the crystal manufacturer startup time v dd is stabilized - 2 - ms
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 64/120 docid026006 rev 4 figure 16. typical application with an 8 mhz crystal 1. r ext value depends on the cr ystal characteristics. low-speed external clock generated from a crystal resonator the low-speed external (lse) clock can be supplied with a 32.768 khz crystal resonator oscillator. all the information gi ven in this paragraph are based on design simulation results obtained with typical external components specified in table 37 . in the application, the resonator and the load capa citors have to be placed as cl ose as possible to the oscillator pins in order to minimize output distortion a nd startup stabilization time . refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy). 069  26&b,1 26&b287 5 ) %ldv frqwuroohg jdlq i +6( 5 (;7 0+] uhvrqdwru 5hvrqdwruzlwklqwhjudwhg fdsdflwruv & / & / table 37. lse oscillator characteristics (f lse = 32.768 khz) symbol parameter conditions (1) min (2) typ max (2) unit i dd lse current consumption low drive capability - 0.5 0.9 a medium-low drive capability - - 1 medium-high drive capability - - 1.3 high drive capability - - 1.6 g m oscillator transconductance low drive capability 5 - - a/v medium-low drive capability 8 - - medium-high drive capability 15 - - high drive capability 25 - - t su(lse) (3) startup time v ddiox is stabilized - 2 - s 1. refer to the note and caution paragraphs below the table, and to the application note an2867 ?oscillator design guide for st microcontrollers?. 2. guaranteed by design, not tested in production. 3. t su(lse) is the startup time measured from the moment it is en abled (by software) to a stabili zed 32.768 khz oscillation is reached. this value is measured for a standard crystal and it can vary significantly with the crystal manufacturer
docid026006 rev 4 65/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 note: for information on selecting the crystal, refer to the application note an2867 ?oscillator design guide for st microcontrollers? available from the st website www.st.com . figure 17. typical applicati on with a 32.768 khz crystal note: an external resistor is not required between osc32_in and osc32_out and it is forbidden to add one. 6.3.7 internal clock source characteristics the parameters given in table 38 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . the provided curves are characterization results, not tested in production. 069 26&b,1 26&b287 'ulyh surjudppdeoh dpsolilhu i /6( n+] uhvrqdwru 5hvrqdwruzlwklqwhjudwhg fdsdflwruv & / & /
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 66/120 docid026006 rev 4 high-speed internal (hsi) rc oscillator figure 18. hsi oscillator accuracy characterization results for soldered parts table 38. hsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = -40 to 105c unless otherwise specified. symbol parameter conditions min typ max unit f hsi frequency - - 8 - mhz trim hsi user trimming step - - - 1 (2) 2. guaranteed by design, not tested in production. % ducy (hsi) duty cycle - 45 (2) -55 (2) % acc hsi accuracy of the hsi oscillator t a = -40 to 105c -2.8 (3) 3. data based on characterization results, not tested in production. -3.8 (3) % t a = -10 to 85c -1.9 (3) -2.3 (3) t a = 0 to 85c -1.9 (3) -2 (3) t a = 0 to 70c -1.3 (3) -2 (3) t a = 0 to 55c -1 (3) -2 (3) t a = 25c (4) 4. factory calibrated, parts not soldered. -1 - 1 t su(hsi) hsi oscillator startup time - 1 (2) -2 (2) s i dda(hsi) hsi oscillator power consumption - - 80 100 (2) a 069 5<?$> " ."9 .*/                  
docid026006 rev 4 67/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 high-speed internal 14 mhz (hsi14) rc oscillator (dedicated to adc) figure 19. hsi14 oscillator accuracy characterization results table 39. hsi14 oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi14 frequency - - 14 - mhz trim hsi14 user-trimming step - - - 1 (2) 2. guaranteed by design, not tested in production. % ducy (hsi14) duty cycle - 45 (2) -55 (2) % acc hsi14 accuracy of the hsi14 oscillator (factory calibrated) t a = ?40 to 105 c ?4.2 (3) 3. data based on characterization results, not tested in production. -5.1 (3) % t a = ?10 to 85 c ?3.2 (3) -3.1 (3) % t a = 0 to 70 c ?2.5 (3) -2.3 (3) % t a = 25 c ?1 - 1 % t su(hsi14) hsi14 oscillator startup time - 1 (2) -2 (2) s i dda(hsi14) hsi14 oscillator power consumption --100150 (2) a 069                        0$; 0,1 7>?&@ $
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 68/120 docid026006 rev 4 high-speed internal 48 mhz (hsi48) rc oscillator figure 20. hsi48 oscillator accuracy characterization results table 40. hsi48 oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter conditions min typ max unit f hsi48 frequency - - 48 - mhz trim hsi48 user-trimming step - 0.09 (2) 0.14 0.2 (2) % ducy (hsi48) duty cycle - 45 (2) 2. guaranteed by design, not tested in production. -55 (2) % acc hsi48 accuracy of the hsi48 oscillator (factory calibrated) t a = ?40 to 105 c -4.9 (3) 3. data based on characterization results, not tested in production. -4.7 (3) % t a = ?10 to 85 c -4.1 (3) -3.7 (3) % t a = 0 to 70 c -3.8 (3) -3.4 (3) % t a = 25 c -2.8 - 2.9 % t su(hsi48) hsi48 oscillator startup time - - - 6 (2) s i dda(hsi48) hsi48 oscillator power consumption - - 312 350 (2) a 069                        0$; 0,1 7>?&@ $
docid026006 rev 4 69/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 low-speed internal (lsi) rc oscillator 6.3.8 pll characteristics the parameters given in table 42 are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . 6.3.9 memory characteristics flash memory the characteristics are given at t a = ?40 to 105 c unless otherwise specified. table 41. lsi oscillator characteristics (1) 1. v dda = 3.3 v, t a = ?40 to 105 c unless otherwise specified. symbol parameter min typ max unit f lsi frequency 30 40 50 khz t su(lsi) (2) 2. guaranteed by design, not tested in production. lsi oscillator startup time - - 85 s i dda(lsi) (2) lsi oscillator power consumption - 0.75 1.2 a table 42. pll characteristics symbol parameter value unit min typ max f pll_in pll input clock (1) 1. take care to use the appropriate multiplier factors to obtain pll input clock values compatible with the range defined by f pll_out . 1 (2) 8.0 24 (2) mhz pll input clock duty cycle 40 (2) -60 (2) % f pll_out pll multiplier output clock 16 (2) -48mhz t lock pll lock time - - 200 (2) 2. guaranteed by design, not tested in production. s jitter pll cycle-to-cycle jitter - - 300 (2) ps table 43. flash memory characteristics symbol parameter conditions min typ max (1) 1. guaranteed by design, not tested in production. unit t prog 16-bit programming time t a = - 40 to +105 c 40 53.5 60 s t erase page (2 kb) erase time t a = - 40 to +105 c 20 - 40 ms t me mass erase time t a = - 40 to +105 c 20 - 40 ms i dd supply current write mode - - 10 ma erase mode - - 12 ma
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 70/120 docid026006 rev 4 6.3.10 emc characteristics susceptibility tests are perf ormed on a sample basis duri ng device characterization. functional ems (electromagnetic susceptibility) while a simple application is executed on t he device (toggling 2 leds through i/o ports). the device is stressed by two electromagnetic events until a failure o ccurs. the failure is indicated by the leds: ? electrostatic discharge (esd) (positive and negative) is applied to all device pins until a functional disturbance occurs. this test is compliant with the iec 61000-4-2 standard. ? ftb : a burst of fast transient voltage (positive and negative) is applied to v dd and v ss through a 100 pf capacitor, until a func tional disturbance occurs. this test is compliant with the iec 61000-4-4 standard. a device reset allows normal operations to be resumed. the test results are given in table 45 . they are based on the ems levels and classes defined in application note an1709. designing hardened software to avoid noise problems emc characterization and optimization are per formed at component level with a typical application environment and simplified mcu soft ware. it should be noted that good emc performance is highly dependent on the user application and the software in particular. therefore it is recommended that the user applies emc software optimization and prequalification tests in re lation with the emc level requested for his application. table 44. flash memory endurance and data retention symbol parameter conditions min (1) 1. data based on characterization results, not tested in production. unit n end endurance t a = ?40 to +105 c 10 kcycle t ret data retention 1 kcycle (2) at t a = 85 c 2. cycling performed over the whole temperature range. 30 year 1 kcycle (2) at t a = 105 c 10 10 kcycle (2) at t a = 55 c 20 table 45. ems characteristics symbol parameter conditions level/ class v fesd voltage limits to be applied on any i/o pin to induce a functional disturbance v dd = 1.8 v, lqfp100, t a = +25 c, f hclk = 48 mhz, conforming to iec 61000-4-2 2b v eftb fast transient voltage burst limits to be applied through 100 pf on v dd and v ss pins to induce a functional disturbance v dd = 1.8 v, lqfp100, t a = +25c, f hclk = 48 mhz, conforming to iec 61000-4-4 4b
docid026006 rev 4 71/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 software recommendations the software flowchart must include the m anagement of runaway conditions such as: ? corrupted program counter ? unexpected reset ? critical data corruption (for example control registers) prequalification trials most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forci ng a low state on the nrst pin or the oscillator pins for 1 second. to complete these trials, esd stress can be applie d directly on the device, over the range of specification values. when unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note an1015). electromagnetic interference (emi) the electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 leds through the i/o por ts). this emission test is compliant with iec 61967-2 standard which specifies the test board and the pin loading. 6.3.11 electrical sens itivity characteristics based on three different tests (esd, lu) using specific measurement methods, the device is stressed in order to determ ine its performance in terms of electrical sensitivity. electrostatic discharge (esd) electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combinati on. the sample size depends on the number of supply pins in the device (3 parts (n+1) supply pins). this test conforms to the jesd22-a114/c101 standard. table 46. emi characteristics symbol parameter conditions monitored frequency band max vs. [f hse /f hclk ] unit 8/48 mhz s emi peak level v dd = 1.8 v, t a = 25 c, lqfp100 package compliant with iec 61967-2 0.1 to 30 mhz 2 dbv 30 to 130 mhz 21 130 mhz to 1 ghz 15 emi level 4 -
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 72/120 docid026006 rev 4 static latch-up two complementary static te sts are required on six pa rts to assess the latch-up performance: ? a supply overvoltage is applied to each power supply pin. ? a current injection is applied to each input, output and configurable i/o pin. these tests are compliant with eia/jesd 78a ic latch-up standard. 6.3.12 i/o current in jection characteristics as a general rule, current injection to the i/o pins, due to external voltage below v ss or above v ddiox (for standard, 3.3 v-capable i/o pins) should be avoided during normal product operation. however, in order to gi ve an indication of the robustness of the microcontroller in cases when abnormal injection a ccidentally happens, susceptibility tests are performed on a sample basis during device characterization. functional susceptibility to i/o current injection while a simple application is executed on the device, the device is stressed by injecting current into the i/o pins programmed in floating input mode . while current is injected into the i/o pin, one at a time, the device is checked for functional failures. the failure is indicated by an out of range parameter: adc error above a certain limit (higher than 5 lsb tue), out of conventional limits of induced leakage current on adjacent pins (out of the -5 a/+0 a range) or other functional failure (for example reset occurrence or oscillator freque ncy deviation). the characterization results are given in table 49 . negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection. table 47. esd absolute maximum ratings symbol ratings conditions packages class maximum value (1) unit v esd(hbm) electrostatic discharge voltage (human body model) t a = +25 c, conforming to jesd22-a114 all 2 2000 v v esd(cdm) electrostatic discharge voltage (charge device model) t a = +25 c, conforming to ansi/esd stm5.3.1 wlcsp49 c3 250 v all others c4 500 1. data based on characterization results, not tested in production. table 48. electrical sensitivities symbol parameter conditions class lu static latch-up class t a = +105 c conforming to jesd78a ii level a
docid026006 rev 4 73/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.3.13 i/o port characteristics general input/output characteristics unless otherwise specified, the parameters given in table 50 are derived from tests performed under the conditions summarized in table 23: general operating conditions . all i/os are designed as cmos- and ttl-compliant (except boot0). table 49. i/o current injection susceptibility symbol description functional susceptibility unit negative injection positive injection i inj injected current on boot0 and pf1 pins ?0 na ma injected current on pc0 pin ?0 +5 injected current on pa11 and pa12 pins with induced leakage current on adjacent pins less than -1 ma ?5 na injected current on all other ft and ftf pins, and on por pin ?5 na injected current on all other tta, tc and rst pins ?5 +5 table 50. i/o static characteristics symbol parameter conditions min typ max unit v il low level input voltage tc and tta i/o - - 0.3 v ddiox +0.07 (1) v ft and ftf i/o - - 0.475 v ddiox ?0.2 (1) boot0 - - 0.3 v ddiox ?0.3 (1) all i/os except boot0 pin --0.3 v ddiox v ih high level input voltage tc and tta i/o 0.445 v ddiox +0.398 (1) -- v ft and ftf i/o 0.5 v ddiox +0.2 (1) -- boot0 0.2 v ddiox +0.95 (1) -- all i/os except boot0 pin 0.7 v ddiox -- v hys schmitt trigger hysteresis tc and tta i/o - 200 (1) - mv ft and ftf i/o - 100 (1) - boot0 - 300 (1) -
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 74/120 docid026006 rev 4 all i/os are cmos- and ttl-compliant (no software configuration required). their characteristics cover more than the strict cmos-technology or ttl parameters. the coverage of these requirements is shown in figure 21 for standard i/os, and in figure 22 for 5 v-tolerant i/os. the following curves are design simulation results, not tested in production. i lkg input leakage current (2) tc, ft and ftf i/o tta in digital mode v ss v in v ddiox -- 0.1 a tta in digital mode v ddiox v in v dda --1 tta in analog mode v ss v in v dda -- 0.2 ft and ftf i/o v ddiox v in 5 v --10 r pu weak pull-up equivalent resistor (3) v in = v ss 25 40 55 k ? r pd weak pull-down equivalent resistor (3) v in = - v ddiox 25 40 55 k ? c io i/o pin capacitance - - 5 - pf 1. data based on design simulation only. not tested in production. 2. the leakage could be higher than the maximum value, if negative current is injected on adjacent pins. refer to table 49: i/o current injection susceptibility . 3. pull-up and pull-down resistor s are designed with a true resistance in seri es with a switchable pmos/nmos. this pmos/nmos contribution to the series resistance is minimal (~10% order). table 50. i/o static characteristics (continued) symbol parameter conditions min typ max unit
docid026006 rev 4 75/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 21. tc and tta i/o input characteristics figure 22. five volt tolerant (ft and ftf) i/o input characteristics 06y9                   7(67('5$1*( 7(67('5$1*( 9 ,+plq  9 '',2[  &026vwdqgduguhtxluhphqw 9 ,/pd[  9 '',2[  &026vwdqgduguhtxluhphqw 81'(),1(',13875$1*( 9 ,+plq  9 '',2[  9 ,/pd[  9 '',2[  9 ,1  9 9 '',2[  9 77/vwdqgduguhtxluhphqw 77/vwdqgduguhtxluhphqw 06y9                   7(67('5$1*( 7(67('5$1*( 9 ,+plq  9 '',2[  &026vwdqgduguhtxluhphqw 9 ,/pd[  9 '',2[  &026vwdqgduguhtxluhphqw 81'(),1(',13875$1*( 9 ,+plq  9 '',2[  9 ,/pd[  9 '',2[  9 ,1  9 9 '',2[  9 77/vwdqgduguhtxluhphqw 77/vwdqgduguhtxluhphqw
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 76/120 docid026006 rev 4 output driving current the gpios (general purpose input/outputs) can sink or source up to +/-8 ma, and sink or source up to +/- 20 ma (with a relaxed v ol /v oh ). in the user application, the number of i/o pi ns which can drive curr ent must be limited to respect the absolute maximum rating specified in section 6.2 : ? the sum of the currents sourced by all the i/os on v ddiox , plus the maximum consumption of the mcu sourced on v dd , cannot exceed the absolute maximum rating i vdd (see table 20: voltage characteristics ). ? the sum of the currents sunk by all the i/os on v ss , plus the maximu m consumption of the mcu sunk on v ss , cannot exceed the absolute maximum rating i vss (see table 20: voltage characteristics ). output voltage levels unless otherwise specified, th e parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . all i/os are cmos- and ttl-compliant (ft, tta or tc unless otherwise specified). table 51. output voltage characteristics (1) symbol parameter conditions min max unit v ol output low level voltage for an i/o pin cmos port (2) |i io | = 8 ma v ddiox 2.7 v -0.4 v v oh output high level voltage for an i/o pin v ddiox ?0.4 - v ol output low level voltage for an i/o pin ttl port (2) |i io | = 8 ma v ddiox 2.7 v -0.4 v v oh output high level voltage for an i/o pin 2.4 - v ol (3) output low level voltage for an i/o pin |i io | = 20 ma v ddiox 2.7 v -1.3 v v oh (3) output high level voltage for an i/o pin v ddiox ?1.3 - v ol (3) output low level voltage for an i/o pin |i io | = 6 ma v ddiox 2 v -0.4 v v oh (3) output high level voltage for an i/o pin v ddiox ?0.4 - v ol (4) output low level voltage for an i/o pin |i io | = 4 ma -0.4v v oh (4) output high level voltage for an i/o pin v ddiox ?0.4 - v v olfm+ (3) output low level voltage for an ftf i/o pin in fm+ mode |i io | = 20 ma v ddiox 2.7 v -0.4v |i io | = 10 ma - 0.4 v 1. the i io current sourced or sunk by the device must alwa ys respect the absolute maxi mum rating specified in table 20: voltage characteristics , and the sum of the currents sourced or sunk by al l the i/os (i/o ports and control pins) must always respect the absolute maximum ratings i io . 2. ttl and cmos outputs are compatible with jedec standards jesd36 and jesd52. 3. data based on characterization results. not tested in production. 4. data based on characterization results. not tested in production.
docid026006 rev 4 77/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 input/output ac characteristics the definition and values of input/output ac characteristics are given in figure 23 and table 52 , respectively. unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . table 52. i/o ac characteristics (1)(2) ospeedry [1:0] value (1) symbol parameter conditions min max unit x0 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v -2mhz t f(io)out output fall time - 125 ns t r(io)out output rise time - 125 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v -1mhz t f(io)out output fall time - 125 ns t r(io)out output rise time - 125 01 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v -10mhz t f(io)out output fall time - 25 ns t r(io)out output rise time - 25 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v -4mhz t f(io)out output fall time - 62.5 ns t r(io)out output rise time - 62.5 11 f max(io)out maximum frequency (3) c l = 30 pf, v ddiox 2.7 v - 50 mhz c l = 50 pf, v ddiox 2.7 v - 30 c l = 50 pf, 2 v v ddiox < 2.7 v - 20 c l = 50 pf, v ddiox < 2 v - 10 t f(io)out output fall time c l = 30 pf, v ddiox 2.7 v - 5 ns c l = 50 pf, v ddiox 2.7 v - 8 c l = 50 pf, 2 v v ddiox < 2.7 v - 12 c l = 50 pf, v ddiox < 2 v - 25 t r(io)out output rise time c l = 30 pf, v ddiox 2.7 v - 5 c l = 50 pf, v ddiox 2.7 v - 8 c l = 50 pf, 2 v v ddiox < 2.7 v - 12 c l = 50 pf, v ddiox < 2 v - 25
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 78/120 docid026006 rev 4 figure 23. i/o ac charac teristics definition 6.3.14 nrst and npor pin characteristics nrst pin characteristics the nrst pin input driver uses the cmos technology. it is connected to a permanent pull- up resistor, r pu . unless otherwise specified, th e parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . fm+ configuration (4) f max(io)out maximum frequency (3) c l = 50 pf, v ddiox 2 v -2mhz t f(io)out output fall time - 12 ns t r(io)out output rise time - 34 f max(io)out maximum frequency (3) c l = 50 pf, v ddiox < 2 v -0.5mhz t f(io)out output fall time - 16 ns t r(io)out output rise time - 44 -t extipw pulse width of external signals detected by the exti controller -10-ns 1. the i/o speed is configured using the ospeedrx[1:0] bits . refer to the stm32f0xxxx rm0091 reference manual for a description of gpio port configuration register. 2. guaranteed by design, not tested in production. 3. the maximum frequency is defined in figure 23 . 4. when fm+ configuration is set, the i/o speed control is bypassed. refer to the stm32f0xxxx reference manual rm0091 for a detailed description of fm+ i/o configuration. table 52. i/o ac characteristics (1)(2) (continued) ospeedry [1:0] value (1) symbol parameter conditions min max unit 069 7       0d[lpxpiuhtxhqf\lvdfklhyhgli ww ? zkhqordghge\& vhhwkhwdeoh ,2$&fkdudfwhulvwlfvghilqlwlrq ui u ,2 rxw w i ,2 rxw w -   7dqgliwkhgxw\f\fohlv 
docid026006 rev 4 79/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 24. recommended nrst pin protection 1. the external capacitor protects the device against par asitic resets. 2. the user must ensure that the level on the nrst pin can go below the v il(nrst) max level specified in table 53: nrst pin characteristics . otherwise the reset will not be taken into account by the device. npor pin characteristics the npor pin input driver uses the cmos tech nology. it is connected to a permanent pull- up resistor to the v dda , r pu . unless otherwise specified, the parameters given in table 54 below are derived from tests performed under ambient temperature and supply voltage conditions summarized in table 23: general operating conditions . table 53. nrst pin characteristics symbol parameter conditions min typ max unit v il(nrst) nrst input low level voltage - - - 0.3 v dd +0.07 (1) v v ih(nrst) nrst input high level voltage - 0.445 v dd +0.398 (1) -- v hys(nrst) nrst schmitt trigger voltage hysteresis --200-mv r pu weak pull-up equivalent resistor (2) v in = v ss 25 40 55 k ? v f(nrst) nrst input filtered pulse - - - 100 (1) ns v nf(nrst) nrst input not filtered pulse - 700 (1) --ns 1. data based on design simulation only. not tested in production. 2. the pull-up is designed with a true re sistance in series with a switchable pmos . this pmos contribution to the series resistance is minimal (~10% order). 069 5 38 9 '' ,qwhuqdouhvhw ([whuqdo uhvhwflufxlw  1567  )lowhu ?)
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 80/120 docid026006 rev 4 6.3.15 12-bit adc characteristics unless otherwise specified, the parameters given in table 55 are derived from tests performed under the conditions summarized in table 23: general operating conditions . note: it is recommended to perform a calibration after each power-up. table 54. npor pin characteristics symbol parameter conditions min typ max unit v il(npor) npor input low level voltage - - - 0.475 v dda - 0.2 (1) v v ih(npor) npor input high level voltage -0.5 v dda + 0.2 (1) -- v hys(npor) npor schmitt trigger voltage hysteresis --100 (1) -mv r pu weak pull-up equivalent resistor (2) v in = v ss 25 40 55 k 1. guaranteed by design, not tested in production. 2. the pull-up is designed with a true resistance in series wi th a switchable pmos. this pmos contribution to the series resistance is minimal (~10% order). table 55. adc characteristics symbol parameter conditions min typ max unit v dda analog supply voltage for adc on - 2.4 - 3.6 v i dda (adc) current consumption of the adc (1) v dda = 3.3 v - 0.9 - ma f adc adc clock frequency - 0.6 - 14 mhz f s (2) sampling rate 12-bit resolution 0.043 - 1 mhz f trig (2) external trigger frequency f adc = 14 mhz, 12-bit resolution --823khz 12-bit resolution - - 17 1/f adc v ain conversion voltage range - 0 - v dda v r ain (2) external input impedance see equation 1 and table 56 for details --50k ? r adc (2) sampling switch resistance ---1k ? c adc (2) internal sample and hold capacitor ---8pf t cal (2)(3) calibration time f adc = 14 mhz 5.9 s -831/f adc
docid026006 rev 4 81/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 equation 1: r ain max formula the formula above ( equation 1 ) is used to dete rmine the maximum external impedance allowed for an error below 1/4 of lsb. here n = 12 (from 12-bit resolution). w latency (2)(4) adc_dr register ready latency adc clock = hsi14 1.5 adc cycles + 2 f pclk cycles - 1.5 adc cycles + 3 f pclk cycles - adc clock = pclk/2 - 4.5 - f pclk cycle adc clock = pclk/4 - 8.5 - f pclk cycle t latr (2) trigger conversion latency f adc = f pclk /2 = 14 mhz 0.196 s f adc = f pclk /2 5.5 1/f pclk f adc = f pclk /4 = 12 mhz 0.219 s f adc = f pclk /4 10.5 1/f pclk f adc = f hsi14 = 14 mhz 0.179 - 0.250 s jitter adc adc jitter on trigger conversion f adc = f hsi14 -1-1/f hsi14 t s (2) sampling time f adc = 14 mhz 0.107 - 17.1 s - 1.5 - 239.5 1/f adc t stab (2) stabilization time - 14 1/f adc t conv (2) total conversion time (including sampling time) f adc = 14 mhz, 12-bit resolution 1-18s 12-bit resolution 14 to 252 (t s for sampling +12.5 for successive approximation) 1/f adc 1. during conversion of the sampled value (12.5 x adc clock period), an additional c onsumption of 100 a on i dda and 60 a on i dd should be taken into account. 2. guaranteed by design, not tested in production. 3. specified value includes only adc timing. it does not include the latency of the register access. 4. this parameter specify latency for transfer of the conversion result to the adc_dr register. eoc flag is set at this time. table 55. adc characteristics (continued) symbol parameter conditions min typ max unit r ain t s f adc c adc 2 n2 + () ln --------------------------------------------------------------- - r adc ? < = () () ( ? ) (1) 1.5 0.11 0.4 7.5 0.54 5.9 13.5 0.96 11.4
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 82/120 docid026006 rev 4 28.52.0425.2 41.52.9637.2 55.5 3.96 50 71.5 5.11 na 239.5 17.1 na 1. guaranteed by design, not tested in production. table 56. r ain max for f adc = 14 mhz (continued) t s (cycles) t s (s) r ain max (k ? ) (1) table 57. adc accuracy (1)(2)(3) symbol parameter test conditions typ max (4) unit et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k ? v dda = 3 v to 3.6 v t a = 25 c 1.3 2 lsb eo offset error 1 1.5 eg gain error 0.5 1.5 ed differential linearity error 0.7 1 el integral linearity error 0.8 1.5 et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k ? v dda = 2.7 v to 3.6 v t a = - 40 to 105 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 et total unadjusted error f pclk = 48 mhz, f adc = 14 mhz, r ain < 10 k ? v dda = 2.4 v to 3.6 v t a = 25 c 3.3 4 lsb eo offset error 1.9 2.8 eg gain error 2.8 3 ed differential linearity error 0.7 1.3 el integral linearity error 1.2 1.7 1. adc dc accuracy values are measured after internal calibration. 2. adc accuracy vs. negative injection current: injecting negativ e current on any of the standard (non-robust) analog input pins should be avoided as this signific antly reduces the accuracy of the conversion being performed on another analog input. it is recommended to add a schottky diode (pin to gr ound) to standard analog pins which may potentially inject negative current. any positive injection current within the limits specified for i inj(pin) and i inj(pin) in section 6.3.13 does not affect the adc accuracy. 3. better performance may be achieved in restricted v dda , frequency and temperature ranges. 4. data based on characterization re sults, not tested in production.
docid026006 rev 4 83/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 25. adc accuracy characteristics figure 26. typical connecti on diagram using the adc 1. refer to table 55: adc characteristics for the values of r ain , r adc and c adc . 2. c parasitic represents the capacitance of the pcb (dependent on soldering and pcb layout quality) plus the pad capacitance (roughly 7 pf). a high c parasitic value will downgrade conversion accuracy. to remedy this, f adc should be reduced. general pcb design guidelines power supply decoupling should be performed as shown in figure 12: power supply scheme . the 10 nf capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip. ( 7  7rwdo8qdmxvwhg(uurupd[lpxpghyldwlrq ehwzhhqwkhdfwxdodqglghdowudqvihufxuyhv ( 2  2iivhw(uurupd[lpxpghyldwlrq ehwzhhqwkhiluvwdfwxdowudqvlwlrqdqgwkhiluvw lghdorqh ( *  *dlq(uurughyldwlrqehwzhhqwkhodvw lghdowudqvlwlrqdqgwkhodvwdfwxdorqh ( '  'liihuhqwldo/lqhdulw\(uurupd[lpxp ghyldwlrqehwzhhqdfwxdovwhsvdqgwkhlghdorqhv ( /  ,qwhjudo/lqhdulw\(uurupd[lpxpghyldwlrq ehwzhhqdq\dfwxdowudqvlwlrqdqgwkhhqgsrlqw fruuhodwlrqolqh  ([dpsohridqdfwxdowudqvihufxuyh  7khlghdowudqvihufxuyh  (qgsrlqwfruuhodwlrqolqh                   9 ''$ 9 66$ ( 2 ( 7 ( / ( * ( ' /6% ,'($/    069 069 $,1[ ? ?$  & sdudvlwlf , / 9 7 9 7 elw frqyhuwhu & $'& 5 $'& 9 ''$ 6dpsohdqgkrog$'& frqyhuwhu 5 $,1 9 $,1 
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 84/120 docid026006 rev 4 6.3.16 dac electri cal specifications table 58. dac characteristics symbol parameter min typ max unit comments v dda analog supply voltage for dac on 2.4 - 3.6 v - r load (1) resistive load with buffer on 5- - k ? load connected to v ssa 25 - - k ? load connected to v dda r o (1) impedance output with buffer off -- 15 k ? when the buffer is off, the minimum resistive load between dac_out and v ss to have a 1% accuracy is 1.5 m ? c load (1) capacitive load - - 50 pf maximum capacitive load at dac_out pin (when the buffer is on). dac_out min (1) lower dac_out voltage with buffer on 0.2 - - v it gives the maximum output excursion of the dac. it corresponds to 12-bit input code (0x0e0) to (0xf1c) at v dda = 3.6 v and (0x155) and (0xeab) at v dda = 2.4 v dac_out max (1) higher dac_out voltage with buffer on --v dda ? 0.2 v dac_out min (1) lower dac_out voltage with buffer off -0.5 - mv it gives the maximum output excursion of the dac. dac_out max (1) higher dac_out voltage with buffer off --v dda ? 1lsb v i dda (1) dac dc current consumption in quiescent mode (2) -- 600 a with no load, middle code (0x800) on the input -- 700 a with no load, worst code (0xf1c) on the input dnl (3) differential non linearity difference between two consecutive code-1lsb) -- 0.5 lsb given for the dac in 10-bit configuration -- 2 lsb given for the dac in 12-bit configuration inl (3) integral non linearity (difference between measured value at code i and the value at code i on a line drawn between code 0 and last code 1023) -- 1 lsb given for the dac in 10-bit configuration -- 4 lsb given for the dac in 12-bit configuration offset (3) offset error (difference between measured value at code (0x800) and the ideal value = v dda /2) -- 10 mv - -- 3 lsb given for the dac in 10-bit at v dda = 3.6 v -- 12lsb given for the dac in 12-bit at v dda = 3.6 v
docid026006 rev 4 85/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 27. 12-bit buffered / non-buffered dac 1. the dac integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external oper ational amplifier. the buffer can be bypassed by configuring the boffx bit in the dac_cr register. gain error (3) gain error - - 0.5 % given for the dac in 12-bit configuration t settling (3) settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when dac_out reaches final value 1lsb -3 4 sc load 50 pf, r load 5 k ? update rate (3) max frequency for a correct dac_out change when small variation in the input code (from code i to i+1lsb) -- 1 ms/sc load 50 pf, r load 5 k ? t wakeup (3) wakeup time from off state (setting the enx bit in the dac control register) -6.5 10 s c load 50 pf, r load 5 k ? input code between lowest and highest possible ones. psrr+ (1) power supply rejection ratio (to v dda ) (static dc measurement - ?67 ?40 db no r load , c load = 50 pf 1. guaranteed by design, not tested in production. 2. the dac is in ?quiescent mode? when it keeps the val ue steady on the output so no dynam ic consumption is involved. 3. data based on characterization re sults, not tested in production. table 58. dac characteristics (continued) symbol parameter min typ max unit comments %xiihuhg1rqexiihuhg'$& '$&b287[ %xiihu elwgljlwdo wrdqdorj frqyhuwhu  5 / & / 069
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 86/120 docid026006 rev 4 6.3.17 comparator characteristics table 59. comparator characteristics symbol parameter conditions min (1) typ max (1) unit v dda analog supply voltage v refint scaler not in use 1.65 -3.6 v v refint scaler in use 2 v in comparator input voltage range -0-v dda - v sc v refint scaler offset voltage - - 5 10 mv t s_sc v refint scaler startup time from power down first v refint scaler activation after device power on -- 1000 (2) ms next activations - - 0.2 t start comparator startup time startup time to reach propagation delay specification --60s t d propagation delay for 200 mv step with 100 mv overdrive ultra-low power mode - 2 4.5 s low power mode - 0.7 1.5 medium power mode - 0.3 0.6 high speed mode v dda 2.7 v - 50 100 ns v dda < 2.7 v - 100 240 propagation delay for full range step with 100 mv overdrive ultra-low power mode - 2 7 s low power mode - 0.7 2.1 medium power mode - 0.3 1.2 high speed mode v dda 2.7 v - 90 180 ns v dda < 2.7 v - 110 300 v offset comparator offset error - - 4 10 mv dv offset /dt offset error temperature coefficient --18-v/c i dd(comp) comp current consumption ultra-low power mode - 1.2 1.5 a low power mode - 3 5 medium power mode - 10 15 high speed mode - 75 100
docid026006 rev 4 87/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 28. maximum v refint scaler startup time from power down v hys comparator hysteresis no hysteresis (compxhyst[1:0]=00) --0- mv low hysteresis (compxhyst[1:0]=01) high speed mode 3 8 13 all other power modes 510 medium hysteresis (compxhyst[1:0]=10) high speed mode 7 15 26 all other power modes 919 high hysteresis (compxhyst[1:0]=11) high speed mode 18 31 49 all other power modes 19 40 1. data based on characterization results, not tested in production. 2. for more details and conditions see figure 28: maximum v refint scaler startup time from power down . table 59. comparator characteristics (continued) symbol parameter conditions min (1) typ max (1) unit     re r?  ? e  ?  ? ^z^~u? ~u? du????~ ?xsgs  d?xes ?xesgs  d?xs ?xsgs  d?xs
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 88/120 docid026006 rev 4 6.3.18 temperature sensor characteristics 6.3.19 v bat monitoring characteristics 6.3.20 timer characteristics the parameters given in the followi ng tables are guaranteed by design. refer to section 6.3.13: i/o port characteristics for details on the input/output alternate function characteristics (output compare, i nput capture, external clock, pwm output). table 60. ts characteristics symbol parameter min typ max unit t l (1) v sense linearity with temperature - 1 2 c avg_slope (1) average slope 4.0 4.3 4.6 mv/c v 30 voltage at 30 c ( 5 c) (2) 1.34 1.43 1.52 v t start (1) adc_in16 buffer startup time - - 10 s t s_temp (1) adc sampling time when reading the temperature 4- -s 1. guaranteed by design, not tested in production. 2. measured at v dda = 3.3 v 10 mv. the v 30 adc conversion result is stored in the ts_cal1 byte. refer to table 2: temperature sensor calibration values . table 61. v bat monitoring characteristics symbol parameter min typ max unit r resistor bridge for v bat -2 x 50- k ? q ratio on v bat measurement - 2 - - er (1) error on q ?1 - +1 % t s_vbat (1) adc sampling time when reading the v bat 4- -s 1. guaranteed by design, not tested in production. table 62. timx characteristics symbol parameter conditions min typ max unit t res(tim) timer resolution time --1- t timxclk f timxclk = 48 mhz - 20.8 - ns f ext timer external clock frequency on ch1 to ch4 -- f timxclk /2 -mhz f timxclk = 48 mhz - 24 - mhz t max_count 16-bit timer maximum period -- 2 16 - t timxclk f timxclk = 48 mhz - 1365 - s 32-bit counter maximum period -- 2 32 - t timxclk f timxclk = 48 mhz - 89.48 - s
docid026006 rev 4 89/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 6.3.21 communication interfaces i 2 c interface characteristics the i 2 c interface meets the timings requirements of the i 2 c-bus specification and user manual rev. 03 for: ? standard-mode (sm): with a bit rate up to 100 kbit/s ? fast-mode (fm): with a bit rate up to 400 kbit/s ? fast-mode plus (fm+): with a bit rate up to 1 mbit/s. the i 2 c timings requirements are guaranteed by design when the i2cx peripheral is properly configured (refer to reference manual). the sda and scl i/o requirements are met with the following restrictions: the sda and scl i/o pins are not ?true? open-drain. when configured as open-drain, the pmos connected between the i/o pin and v ddiox is disabled, but is still present. only ftf i/o pins support fm+ low level output current maximum requirement. refer to section 6.3.13: i/o port characteristics for the i 2 c i/os characteristics. all i 2 c sda and scl i/os embed an analog filter. refer to the table below for the analog filter characteristics: table 63. iwdg min/max timeout period at 40 khz (lsi) (1) 1. these timings are given for a 40 kh z clock but the microcontroller inte rnal rc frequency can vary from 30 to 60 khz. moreover, given an ex act rc oscillator frequency, the ex act timings still depend on the phasing of the apb interface clock versus the lsi clock so t hat there is always a full rc period of uncertainty. prescaler divider pr[2:0] bits min timeout rl[11:0]= 0x000 max timeout rl[11:0]= 0xfff unit /4 0 0.1 409.6 ms /8 1 0.2 819.2 /16 2 0.4 1638.4 /32 3 0.8 3276.8 /64 4 1.6 6553.6 /128 5 3.2 13107.2 /256 6 or 7 6.4 26214.4 table 64. wwdg min/max timeout value at 48 mhz (pclk) prescaler wdgtb min timeout value max timeout value unit 1 0 0.0853 5.4613 ms 2 1 0.1706 10.9226 4 2 0.3413 21.8453 8 3 0.6826 43.6906
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 90/120 docid026006 rev 4 spi/i 2 s characteristics unless otherwise specified, the parameters given in table 66 for spi or in table 67 for i 2 s are derived from tests performed under the ambient temperature, f pclkx frequency and supply voltage conditions summarized in table 23: general operating conditions . refer to section 6.3.13: i/o port characteristics for more details on the input/output alternate function characteristics (n ss, sck, mosi, miso for spi and ws, ck, sd for i 2 s). table 65. i 2 c analog filter characteristics (1) 1. guaranteed by design, not tested in production. symbol parameter min max unit t af maximum width of spikes that are suppressed by the analog filter 50 (2) 2. spikes with widths below t af(min) are filtered. 260 (3) 3. spikes with widths above t af(max) are not filtered ns table 66. spi characteristics (1) symbol parameter con ditions min max unit f sck 1/t c(sck) spi clock frequency master mode - 18 mhz slave mode - 18 t r(sck) t f(sck) spi clock rise and fall time capacitive load: c = 15 pf - 6 ns t su(nss) nss setup time slave mode 4tpclk - ns t h(nss) nss hold time slave mode 2tpclk + 10 - t w(sckh) t w(sckl) sck high and low time master mode, f pclk = 36 mhz, presc = 4 tpclk/2 -2 tpclk/2 + 1 t su(mi) t su(si) data input setup time master mode 4 - slave mode 5 - t h(mi) data input hold time master mode 4 - t h(si) slave mode 5 - t a(so) (2) data output access time slave mode, f pclk = 20 mhz 0 3tpclk t dis(so) (3) data output disable time slave mode 0 18 t v(so) data output valid time slave mode (after enable edge) - 22.5 t v(mo) data output valid time master mode (after enable edge) - 6 t h(so) data output hold time slave mode (after enable edge) 11.5 - t h(mo) master mode (after enable edge) 2 - ducy(sck) spi slave input clock duty cycle slave mode 25 75 % 1. data based on characterization results, not tested in production. 2. min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data. 3. min time is for the minimum time to invalidate the output and th e max time is for the maximum time to put the data in hi-z
docid026006 rev 4 91/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 29. spi timing diagram - slave mode and cpha = 0 figure 30. spi timing diagram - slave mode and cpha = 1 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . 06y9 166lqsxw &3+$  &32/  6&.lqsxw &3+$  &32/  0,62rxwsxw 026,lqsxw w vx 6, w k 6, w z 6&./ w z 6&.+ w f 6&. w u 6&. w k 166 w glv 62 w vx 166 w d 62 w y 62 1h[welwv,1 /dvwelw287 )luvwelw,1 )luvwelw287 1h[welwv287 w k 62 w i 6&. /dvwelw,1 06y9 166lqsxw &3+$  &32/  6&.lqsxw &3+$  &32/  0,62rxwsxw 026,lqsxw w vx 6, w k 6, w z 6&./ w z 6&.+ w vx 166 w f 6&. w d 62 w y 62 )luvwelw287 1h[welwv287 1h[welwv,1 /dvwelw287 w k 62 w u 6&. w i 6&. w k 166 w glv 62 )luvwelw,1 /dvwelw,1
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 92/120 docid026006 rev 4 figure 31. spi timing diagram - master mode 1. measurement points are done at cmos levels: 0.3 v dd and 0.7 v dd . dlf 6&.2xwsxw &3+$  026, 287387 0,62 ,13 87 &3+$  /6%287 /6%,1 &32/  &32/  % , 7287 166lqsxw w f 6&. w z 6&.+ w z 6&./ w u 6&. w i 6&. w k 0, +ljk 6&.2xwsxw &3+$  &3+$  &32/  &32/  w vx 0, w y 02 w k 02 06%,1 %,7,1 06%287 table 67. i 2 s characteristics (1) symbol parameter con ditions min max unit f ck 1/t c(ck) i 2 s clock frequency master mode (data: 16 bits, audio frequency = 48 khz) 1.597 1.601 mhz slave mode 0 6.5 t r(ck) i 2 s clock rise time capacitive load c l = 15 pf -10 ns t f(ck) i 2 s clock fall time - 12 t w(ckh) i 2 s clock high time master f pclk = 16 mhz, audio frequency = 48 khz 306 - t w(ckl) i 2 s clock low time 312 - t v(ws) ws valid time master mode 2 - t h(ws) ws hold time master mode 2 - t su(ws) ws setup time slave mode 7 - t h(ws) ws hold time slave mode 0 - ducy(sck) i 2 s slave input clock duty cycle slave mode 25 75 %
docid026006 rev 4 93/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 figure 32. i 2 s slave timing diagram (philips protocol) 1. measurement points are done at cmos levels: 0.3 v ddiox and 0.7 v ddiox . 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. t su(sd_mr) data input setup time master receiver 6 - ns t su(sd_sr) slave receiver 2 - t h(sd_mr) (2) data input hold time master receiver 4 - t h(sd_sr) (2) slave receiver 0.5 - t v(sd_mt) (2) data output valid time master transmitter - 4 t v(sd_st) (2) slave transmitter - 31 t h(sd_mt) data output hold time master transmitter 0 - t h(sd_st) slave transmitter 13 - 1. data based on design simulation and/or char acterization results, not tested in production. 2. depends on f pclk . for example, if f pclk = 8 mhz, then t pclk = 1/f plclk = 125 ns. table 67. i 2 s characteristics (1) (continued) symbol parameter con ditions min max unit 06y9 &.,qsxw &32/  &32/  wf &. :6lqsxw 6'wudqvplw 6'uhfhlyh wz &.+ wz &./ wvx :6 wy 6'b67 wk 6'b67 wk :6 wvx 6'b65 wk 6'b65 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%uhfhlyh  /6%wudqvplw 
electrical characteristics stm32f0 78cb, STM32F078RB, stm32f078vb 94/120 docid026006 rev 4 figure 33. i 2 s master timing diagram (philips protocol) 1. data based on characterization results, not tested in production. 2. lsb transmit/receive of the previ ously transmitted byte. no lsb transmi t/receive is sent before the first byte. 06y9 &.rxwsxw &32/  &32/  wf &. :6rxwsxw 6'uhfhlyh 6'wudqvplw wz &.+ wz &./ wvx 6'b05 wy 6'b07 wk 6'b07 wk :6 wk 6'b05 06%uhfhlyh %lwquhfhlyh /6%uhfhlyh 06%wudqvplw %lwqwudqvplw /6%wudqvplw wi &. wu &. wy :6 /6%uhfhlyh  /6%wudqvplw   
docid026006 rev 4 95/120 stm32f078cb, STM32F078RB, stm32f078vb electrical characteristics 95 usb characteristics the stm32f078cb/rb/vb usb in terface is fully compliant with the usb specification version 2.0 and is usb-if certifie d (for full-speed device operation). table 68. usb electrical characteristics symbol parameter condi tions min. typ max. unit v ddio2 usb transceiver operating voltage -3.0 (1) 1. the stm32f078cb/rb/vb usb functionality is ensured down to 2.7 v but not the full usb electrical characteristics which are degraded in the 2.7-to-3.0 v voltage range. -3.6v t startup (2) 2. guaranteed by design, not tested in production. usb transceiver startup time - - - 1.0 s r pui embedded usb_dp pull-up value during idle - 1.1 1.26 1.5 k ? r pur embedded usb_dp pull-up value during reception - 2.0 2.26 2.6 z drv (2) output driver impedance (3) 3. no external termination series resistors are requi red on usb_dp (d+) and usb_dm (d-); the matching impedance is already included in the embedded driver. driving high and low 28 40 44 ?
package information stm32f078cb, STM32F078RB, stm32f078vb 96/120 docid026006 rev 4 7 package information in order to meet environmental requirements, st offers these devices in different grades of ecopack ? packages, depending on their level of environmental compliance. ecopack ? specifications, grade definitions a nd product status are available at: www.st.com . ecopack ? is an st trademark. 7.1 ufbga100 package information ufbga100 is a 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra-fine-profile ball grid array package. figure 34. ufbga100 package outline 1. drawing is not to scale. table 69. ufbga100 package mechanical data symbol millimeters inches (1) min. typ. max. min. typ. max. a - - 0.600 - - 0.0236 a1 - - 0.110 - - 0.0043 a2 - 0.450 - - 0.0177 - a3 - 0.130 - - 0.0051 0.0094 a4 - 0.320 - - 0.0126 - $&b0(b9 6hdwlqjsodqh $ h = = ' 0 ?e edoov $ ( 7239,(: %277209,(:   $edoo lghqwlilhu h $ $ < ; = ggg = ' ( hhh =<; iii ? ? 0 0 = $ $ $edoo lqgh[duhd
docid026006 rev 4 97/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 figure 35. recommended footprint for ufbga100 package b 0.240 0.290 0.340 0.0094 0.0114 0.0134 d 6.850 7.000 7.150 0.2697 0.2756 0.2815 d1 - 5.500 - - 0.2165 - e 6.850 7.000 7.150 0.2697 0.2756 0.2815 e1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - z - 0.750 - - 0.0295 - ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. values in inches are converted from mm and rounded to 4 decimal digits. table 70. ufbga100 recommended pcb design rules dimension recommended values pitch 0.5 dpad 0.280 mm dsm 0.370 mm typ. (depends on the solder mask registration tolerance) stencil opening 0.280 mm stencil thickness between 0.100 mm and 0.125 mm table 69. ufbga100 package mechanical data (continued) symbol millimeters inches (1) min. typ. max. min. typ. max. $&b)3b9 'sdg 'vp
package information stm32f078cb, STM32F078RB, stm32f078vb 98/120 docid026006 rev 4 device marking the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 36. ufbga100 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. z]?]}v} <:: 670) 9%+ 5 ?} w?}?]v?](]?]}v ~ w]v]v?](]? d^??s
docid026006 rev 4 99/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 7.2 lqfp100 package information lqfp100 is a100-pin, 14 x 14 mm low-profile quad flat package. figure 37. lqfp100 package outline 1. drawing is not to scale. table 71. lqpf100 package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 15.800 16.000 16.200 0. 6220 0.6299 0.6378 d1 13.800 14.000 14.200 0. 5433 0.5512 0.5591 d3 - 12.000 - - 0.4724 - e 15.800 16.000 16.200 0. 6220 0.6299 0.6378 h ,'(17,),&$7,21 3,1 *$8*(3/$1( pp 6($7,1*3/$1( ' ' ' ( ( ( . fff & &         /b0(b9 $ $ $ / / f e $
package information stm32f078cb, STM32F078RB, stm32f078vb 100/120 docid026006 rev 4 figure 38. recommended footprint for lqfp100 package 1. dimensions are expr essed in millimeters. e1 13.800 14.000 14.200 0. 5433 0.5512 0.5591 e3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 0.0 3.5 7.0 0.0 3.5 7.0 ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 71. lqpf100 package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                dlf
docid026006 rev 4 101/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 device marking the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 39. lqfp100 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. 670) 9%7 5 w?}?]v?](]?]}v ~ z]?]}v} :: < ?} k??]}vop?u?l w]v]v?](]? d^???s
package information stm32f078cb, STM32F078RB, stm32f078vb 102/120 docid026006 rev 4 7.3 lqfp64 package information lqfp64 is a 64-pin, 10 x 10 mm low-profile quad flat package. figure 40. lqfp64 package outline 1. drawing is not to scale. table 72. lqfp64 package mechanical data symbol millimeters inches (1) min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d - 12.000 - - 0.4724 - d1 - 10.000 - - 0.3937 - d3 - 7.500 - - 0.2953 - e - 12.000 - - 0.4724 - e1 - 10.000 - - 0.3937 - :b0(b9 $ $ $ 6($7,1*3/$1( fff & e & f $ / / . ,'(17,),&$7,21 3,1 ' ' ' h         ( ( ( *$8*(3/$1( pp
docid026006 rev 4 103/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 figure 41. recommended footprint for lqfp64 package 1. dimensions are expr essed in millimeters. e3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - k 03.57 03.57 l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. values in inches are converted from mm and rounded to 4 decimal digits. table 72. lqfp64 package mechanical data (continued) symbol millimeters inches (1) min typ max min typ max                 dlf
package information stm32f078cb, STM32F078RB, stm32f078vb 104/120 docid026006 rev 4 device marking the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 42. lqfp64 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. 670) 5%7 5 <:: z]?]}v} ?} w?}?]v?](]?]}v ~ w]v]v?](]? d^??s
docid026006 rev 4 105/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 7.4 wlcsp49 pac kage information wlcsp49 is a 49-ball, 3.277 x 3.109 mm, 0.4 mm pitch wafer-level chip-scale package. figure 43. wlcsp49 package outline 1. drawing is not to scale. $rulhqwdwlrq uhihuhqfh :dihuedfnvlgh ( ' 'hwdlo$ urwdwhg? 6hdwlqjsodqh $ %xps e 6lghylhz $ $ 'hwdlo$   * $ h ) * h h $edooorfdwlrq h ( $ %xpsvlgh )urqwylhz $;/b0(b9 = eee ddd ; hhh =
package information stm32f078cb, STM32F078RB, stm32f078vb 106/120 docid026006 rev 4 table 73. wlcsp49 package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.525 0.555 0.585 0.0207 0.0219 0.0230 a1 - 0.175 - - 0.0069 - a2 - 0.380 - - 0.0150 - a3 (2) 2. back side coating - 0.025 - - 0.0010 - b (3) 3. dimension is measured at the maximum bum p diameter parallel to primary datum z. 0.220 0.250 0.280 0.0087 0.0098 0.0110 d 3.242 3.277 3.312 0.1276 0.1290 0.1304 e 3.074 3.109 3.144 0.1210 0.1224 0.1238 e - 0.400 - - 0.0157 - e1 - 2.400 - - 0.0945 - e2 - 2.400 - - 0.0945 - f - 0.4385 - - 0.0173 - g - 0.3545 - - 0.0140 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020
docid026006 rev 4 107/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 device marking the following figure gives an example of topside marking orientation versus ball a1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 44. wlcsp49 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. d^??es }? ]]v?](]?]}v  &%< 5 <:: ?} z]?]}v}
package information stm32f078cb, STM32F078RB, stm32f078vb 108/120 docid026006 rev 4 7.5 lqfp48 package information lqfp48 is a 48-pin, 7 x 7 mm low-profile quad flat package. figure 45. lqfp48 package outline 1. drawing is not to scale. %b0(b9 3,1 ,'(17,),&$7,21 fff & & ' pp *$8*(3/$1( e $ $ $ f $ / / ' ' ( ( ( h         6($7,1* 3/$1( .
docid026006 rev 4 109/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 figure 46. recommended footprint for lqfp48 package 1. dimensions are expr essed in millimeters. table 74. lqfp48 package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a - - 1.600 - - 0.0630 a1 0.050 - 0.150 0.0020 - 0.0059 a2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 d 8.800 9.000 9.200 0.3465 0.3543 0.3622 d1 6.800 7.000 7.200 0.2677 0.2756 0.2835 d3 - 5.500 - - 0.2165 - e 8.800 9.000 9.200 0.3465 0.3543 0.3622 e1 6.800 7.000 7.200 0.2677 0.2756 0.2835 e3 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - l 0.450 0.600 0.750 0.0177 0.0236 0.0295 l1 - 1.000 - - 0.0394 - k 03.57 03.57 ccc - - 0.080 - - 0.0031                  dlg  
package information stm32f078cb, STM32F078RB, stm32f078vb 110/120 docid026006 rev 4 device marking the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 47. lqfp48 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity. <:: 670 )&%7 5 z]?]}v} ?} w?}?]v?](]?]}v ~ w]v]v?](]? d^???s
docid026006 rev 4 111/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 7.6 ufqfpn48 package information ufqfpn48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package. figure 48. ufqfpn48 package outline 1. drawing is not to scale. 2. all leads/pads should also be soldered to the pcb to improve the lead/pad solder joint life. 3. there is an exposed die pad on the underside of t he ufqfpn package. it is recommended to connect and solder this back-side pad to pcb ground. $%b0(b9 ' 3lqlghqwlilhu odvhupdunlqjduhd (( ' < ' ( ([srvhgsdg duhd =   'hwdlo= 5w\s   / &[? slqfruqhu $ 6hdwlqj sodqh $ e h ggg 'hwdlo< 7
package information stm32f078cb, STM32F078RB, stm32f078vb 112/120 docid026006 rev 4 figure 49. recommended footprint for ufqfpn48 package 1. dimensions are expr essed in millimeters. table 75. ufqfpn48 package mechanical data symbol millimeters inches (1) 1. values in inches are converted from mm and rounded to 4 decimal digits. min typ max min typ max a 0.500 0.550 0.600 0.0197 0.0217 0.0236 a1 0.000 0.020 0.050 0.0000 0.0008 0.0020 d 6.900 7.000 7.100 0.2717 0.2756 0.2795 e 6.900 7.000 7.100 0.2717 0.2756 0.2795 d2 5.500 5.600 5.700 0.2165 0.2205 0.2244 e2 5.500 5.600 5.700 0.2165 0.2205 0.2244 l 0.300 0.400 0.500 0.0118 0.0157 0.0197 t - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031              $%b)3b9        
docid026006 rev 4 113/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 device marking the following figure gives an example of topsid e marking orientation versus pin 1 identifier location. other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. figure 50. ufqfpn48 package marking example 1. parts marked as "es", "e" or accompanied by an engineering sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at st charge. in no event, st will be liable for any customer usage of these engineering samples in production. st quality has to be cont acted prior to any decisi on to use these engineering samples to run qualification activity.  w]v]v?](]?]}v w?}?]v?](]?]}v 670) &%8 5 <:: ?} z]?]}v} d^???s
package information stm32f078cb, STM32F078RB, stm32f078vb 114/120 docid026006 rev 4 7.7 thermal characteristics the maximum chip junction temperature (t j max) must never exceed the values given in table 23: general operating conditions . the maximum chip-junction temperature, t j max, in degrees celsius, may be calculated using the following equation: t j max = t a max + (p d max x ja ) where: ? t a max is the maximum ambient temperature in c, ? ja is the package junction-to-ambient thermal resistance, in c/w, ? p d max is the sum of p int max and p i/o max (p d max = p int max + p i/o max), ? p int max is the product of i dd and v dd , expressed in watts. this is the maximum chip internal power. p i/o max represents the maximum power dissipation on output pins where: p i/o max = (v ol i ol ) + ((v ddiox ? v oh ) i oh ), taking into account the actual v ol / i ol and v oh / i oh of the i/os at low and high level in the application. 7.7.1 reference document jesd51-2 integrated circuits thermal test method environment conditions - natural convection (still air). available from www.jedec.org 7.7.2 selecting the product temperature range when ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in section 8: ordering information . each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a spec ific maximum junction temperature. table 76. package thermal characteristics symbol parameter value unit ja thermal resistance junction-ambient ufbga100 - 7 7 mm 55 c/w thermal resistance junction-ambient lqfp100 - 14 14 mm 42 thermal resistance junction-ambient lqfp64 - 10 10 mm / 0.5 mm pitch 44 thermal resistance junction-ambient lqfp48 - 7 7 mm 54 thermal resistance junction-ambient ufqfpn48 - 7 7 mm 32 thermal resistance junction-ambient wlcsp49 - 0.4 mm pitch 49
docid026006 rev 4 115/120 stm32f078cb, STM32F078RB, stm32f078vb package information 117 as applications do not commonly use the stm3 2f078cb/rb/vb at maxi mum dissipation, it is useful to calculate the exact power consum ption and junction temperature to determine which temperature range will be best suit ed to the application. the following examples show how to calculat e the temperature range needed for a given application. example 1: high-performance application assuming the following ap plication conditions: maximum temperature t amax = 82 c (measured according to jesd51-2), i ddmax = 50 ma, v dd = 3.5 v, maximum 20 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v and maximum 8 i/os used at the same time in output at low level with i ol = 20 ma, v ol = 1.3 v p intmax = 50 ma 3.5 v= 175 mw p iomax = 20 8 ma 0.4 v + 8 20 ma 1.3 v = 272 mw this gives: p intmax = 175 mw and p iomax = 272 mw: p dmax = 175 + 272 = 447 mw using the values obtained in table 76 t jmax is calculated as follows: ? for lqfp64, 45 c/w t jmax = 82 c + (45 c/w 447 mw) = 82 c + 20.115 c = 102.115 c this is within the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at leas t with the temperature range suffix 6 (see section 8: ordering information ). note: with this given p dmax we can find the t amax allowed for a given device temperature range (order code suffix 6 or 7). suffix 6: t amax = t jmax - (45c/w 447 mw) = 105-20.115 = 84.885 c suffix 7: t amax = t jmax - (45c/w 447 mw) = 125-20.115 = 104.885 c example 2: high-temperature application using the same rules, it is po ssible to address applications that run at high temperatures with a low dissipation, as long as junction temperature t j remains within the specified range. assuming the following ap plication conditions: maximum temperature t amax = 100 c (measured according to jesd51-2), i ddmax = 20 ma, v dd = 3.5 v, maximum 20 i/os used at the same time in output at low level with i ol = 8 ma, v ol = 0.4 v p intmax = 20 ma 3.5 v= 70 mw p iomax = 20 8 ma 0.4 v = 64 mw this gives: p intmax = 70 mw and p iomax = 64 mw: p dmax = 70 + 64 = 134 mw thus: p dmax = 134 mw using the values obtained in table 76 t jmax is calculated as follows: ? for lqfp64, 45 c/w t jmax = 100 c + (45 c/w 134 mw) = 100 c + 6.03 c = 106.03 c
package information stm32f078cb, STM32F078RB, stm32f078vb 116/120 docid026006 rev 4 this is above the range of the suffix 6 version parts (?40 < t j < 105 c). in this case, parts must be ordered at leas t with the temperature range suffix 7 (see section 8: ordering information ) unless we reduce the power dissipation in order to be able to use suffix 6 parts. refer to figure 51 to select the required temperature range (suffix 6 or 7) according to your temperature or power requirements. figure 51. lqfp64 p d max versus t a 06y9                 6xiil[ 6xiil[ 3 '  p: 7 $  ?&
docid026006 rev 4 117/120 stm32f078cb, STM32F078RB, stm32f078vb ordering information 117 8 ordering information for a list of available options (memory, package, and so on) or for further information on any aspect of this device, please cont act your nearest st sales office. table 77. ordering information scheme example : stm32 f 078 r b t 6 x device family stm32 = arm-based 32-bit microcontroller product type f = general-purpose sub-family 078 = stm32f078xx pin count c = 48/49 pins r = 64 pins v = 100 pins user code memory size b = 128 kbyte package h = ufbga t = lqfp u = ufqfpn y = wlcsp temperature range 6 = ?40 to 85 c 7 = ?40 to 105 c options xxx = code id of programmed parts (includes packing type) tr = tape and reel packing blank = tray packing
revision history stm32f078cb, STM32F078RB, stm32f078vb 118/120 docid026006 rev 4 9 revision history table 78. document revision history date revision changes 03-apr-2014 1 internal 28-may-2014 2 initial release 17-dec-2015 3 cover page: ? part numbers moved to title and table of part numbers removed ? generic product name updated as stm32f078cb/rb/vb section 2: description : ? figure 1: block diagram updated section 3: functional overview : ? figure 2: clock tree updated ? section 3.5.3: low-power modes - added information on peripherals configurable to operate with hsi section 4: pinouts and pin descriptions : ? package pinout figures updated (look and feel) ? figure 8: wlcsp49 package pinout - now presented in top view section 5: memory mapping : ? figure 9: stm32f078 cb/rb/vb memory map updated section 6: electric al characteristics : ? table 20: voltage characteristics and table 21: current characteristics updated ? table 23: general operating conditions - added footnote for v in of tta i/o ? table 25: embedded internal reference voltage : added t start parameter and removed -40-to-85 condition and associated note for v refint ? merger of tables 33 and 34 into table 29: typical current consumption, code executing from flash memory, running from hse 8 mhz crystal ? table 38: hsi oscillator characteristics and figure 18: hsi oscillator accuracy characterization results for soldered parts updated ? table 39: hsi14 oscillator characteristics : changed min values for acc hsi14 , added test conditions ? table 47: esd absolute maximum ratings updated ? table 50: i/o static characteristics - note removed ? table 55: adc characteristics - updated some parameter values, test conditions and added footnotes (3) and (4) ? table 58: dac characteristics - i dda max value (dac dc current consumption) updated ? table 59: comparator characteristics - min added for v dda ? figure 28: maximum v refint scaler startup time from power down added
docid026006 rev 4 119/120 stm32f078cb, STM32F078RB, stm32f078vb revision history 119 17-dec-2015 3 (continued) ? table 61: v bat monitoring characteristics : changed the typical value for r parameter ? table 67: i 2 s characteristics : table reorganized, t v(sd_st) max value updated section 7: package information : ? information on packages generally update section 8: ordering information : ? added tray packing to options 10-jan-2017 4 section 6: electric al characteristics : ? table 37: lse oscillator characteristics (f lse = 32.768 khz) - information on configuring different drive capabilities removed. see the corresponding reference manual. ? table 25: embedded internal reference voltage - v refint values ? table 58: dac characteristics - min. r load to v dda defined ? figure 29: spi timing diagram - slave mode and cpha = 0 and figure 30: spi timing diagram - slave mode and cpha = 1 enhanced and corrected section 8: ordering information : ? the name of the section cha nged from the previous ?part numbering? table 78. document revision history (continued) date revision changes
stm32f078cb, STM32F078RB, stm32f078vb 120/120 docid026006 rev 4 important notice ? please read carefully stmicroelectronics nv and its subsidiaries (?st?) reserve the right to make changes, corrections, enhancements, modifications, and improvements to st products and/or to this document at any time without notice. purchasers should obtain the latest relevant in formation on st products before placing orders. st products are sold pursuant to st?s terms and conditions of sale in place at the time of o rder acknowledgement. purchasers are solely responsible for the choice, selection, and use of st products and st assumes no liability for application assistance or the design of purchasers? products. no license, express or implied, to any intellectual property right is granted by st herein. resale of st products with provisions different from the information set forth herein shall void any warranty granted by st for such product. st and the st logo are trademarks of st. all other product or service names are the property of their respective owners. information in this document supersedes and replaces information previously supplied in any prior versions of this document. ? 2017 stmicroelectronics ? all rights reserved


▲Up To Search▲   

 
Price & Availability of STM32F078RB

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X